top_k_op.h 2.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <iostream>
18 19
#include <utility>
#include <vector>
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
武毅 已提交
22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
Qiao Longfei 已提交
27
using LoDTensor = framework::LoDTensor;
武毅 已提交
28 29 30 31 32

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
33
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
34
class TopkKernel : public framework::OpKernel<T> {
武毅 已提交
35 36 37 38
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    // Get the top k elements of each row of input tensor
    // FIXME: only deal with matrix(2d tensor).
Q
Qiao Longfei 已提交
39 40 41
    auto* input = ctx.Input<LoDTensor>("X");
    auto* output = ctx.Output<LoDTensor>("Out");
    auto* indices = ctx.Output<LoDTensor>("Indices");
武毅 已提交
42 43 44 45
    // k is determined by Attr
    const size_t k = static_cast<int>(ctx.Attr<int>("k"));

    T* output_data = output->mutable_data<T>(ctx.GetPlace());
F
fengjiayi 已提交
46
    int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
武毅 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

    auto eg_input = EigenMatrix<T>::From(*input);

    // reshape input to a flattern matrix(like flat_inner_dims)
    framework::DDim inputdims = input->dims();
    const size_t row = framework::product(
        framework::slice_ddim(inputdims, 0, inputdims.size() - 1));
    const size_t col = inputdims[inputdims.size() - 1];
    Eigen::DSizes<int, 2> flat2dims(row, col);
    // NOTE: eigen shape doesn't affect paddle tensor.
    eg_input.reshape(flat2dims);

    for (size_t i = 0; i < row; i++) {
      std::vector<std::pair<T, size_t>> vec;
      for (size_t j = 0; j < col; j++) {
        vec.push_back(std::pair<T, size_t>(eg_input(i, j), j));
      }

      std::partial_sort(
          vec.begin(), vec.begin() + k, vec.end(),
          [](const std::pair<T, size_t>& l, const std::pair<T, size_t>& r) {
            return l.first > r.first;
          });
      for (size_t j = 0; j < k; j++) {
        output_data[i * k + j] = vec[j].first;
F
fengjiayi 已提交
72
        indices_data[i * k + j] = int64_t(vec[j].second);
武毅 已提交
73 74 75 76 77 78 79
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle