learning_rate_scheduler.py 10.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24 25 26 27
import control_flow
import nn
import ops
import tensor
from ..initializer import init_on_cpu
W
Wu Yi 已提交
28
from ..framework import default_main_program, Parameter
Q
Qiao Longfei 已提交
29

30 31
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
W
Wu Yi 已提交
32
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'append_LARS'
33
]
Q
Qiao Longfei 已提交
34 35


36
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
37
    # the first global step is zero in learning rate decay
38
    global_step = nn.autoincreased_step_counter(
39
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
40
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
41 42 43
    return global_step


44
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
45 46 47 48 49 50 51 52 53 54
    """
    Noam decay method. The numpy implementation of noam decay as follows.

    >>> import numpy as np
    >>> lr_value = np.power(d_model, -0.5) * np.min([
    >>>                         np.power(current_steps, -0.5),
    >>>                         np.power(warmup_steps, -1.5) * current_steps])

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
55 56 57

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
    """
    global_step = _decay_step_counter(1)
    with init_on_cpu():
        a = global_step**-0.5
        b = (warmup_steps**-1.5) * global_step
        lr_value = (d_model**-0.5) * ops.elementwise_min(a, b)

    return lr_value


Y
Yu Yang 已提交
73
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    """Applies exponential decay to the learning rate.

    ```python
    decayed_learning_rate = learning_rate *
            decay_rate ^ (global_step / decay_steps)
    ```
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
90
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
91

92 93 94 95
    with init_on_cpu():
        # update learning_rate
        div_res = global_step / decay_steps
        if staircase:
96
            div_res = ops.floor(div_res)
97 98 99
        decayed_lr = learning_rate * (decay_rate**div_res)

    return decayed_lr
Q
Qiao Longfei 已提交
100 101


Y
Yu Yang 已提交
102
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
103 104
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
105 106 107 108 109
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
110 111 112 113 114 115 116 117 118 119
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
120
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
121

122 123 124
    with init_on_cpu():
        div_res = global_step / decay_steps
        if staircase:
125 126
            div_res = ops.floor(div_res)
        decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
127 128

    return decayed_lr
Q
Qiao Longfei 已提交
129 130


Y
Yu Yang 已提交
131
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
132 133
    """Applies inverse time decay to the initial learning rate.

Y
Yu Yang 已提交
134 135 136 137 138
    >>> if staircase:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
139 140
    Args:
        learning_rate: A scalar float32 value or a Variable. This
Y
Yu Yang 已提交
141
          will be the initial learning rate during training.
Q
Qiao Longfei 已提交
142 143 144 145 146 147 148
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
149
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
150

151 152 153
    with init_on_cpu():
        div_res = global_step / decay_steps
        if staircase:
154
            div_res = ops.floor(div_res)
155 156

        decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
157

158
    return decayed_lr
159 160 161 162 163 164 165


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
166 167 168
    """
    Applies polynomial decay to the initial learning rate.

Q
qiaolongfei 已提交
169
    .. code-block:: python
Q
qiaolongfei 已提交
170 171 172 173 174 175 176

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
177 178

    Args:
Q
qiaolongfei 已提交
179
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
180
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
181
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
182 183 184
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
185 186

    Returns:
Q
update  
qiaolongfei 已提交
187
        Variable: The decayed learning rate
188
    """
Y
Yu Yang 已提交
189
    global_step = _decay_step_counter()
190

191 192
    with init_on_cpu():
        if cycle:
193 194
            div_res = ops.ceil(global_step / decay_steps)
            zero_var = tensor.fill_constant(
195
                shape=[1], dtype='float32', value=0.0)
196
            one_var = tensor.fill_constant(
197 198
                shape=[1], dtype='float32', value=1.0)

199
            with control_flow.Switch() as switch:
200
                with switch.case(global_step == zero_var):
201
                    tensor.assign(input=one_var, output=div_res)
202 203
            decay_steps = decay_steps * div_res
        else:
204
            decay_steps_var = tensor.fill_constant(
205
                shape=[1], dtype='float32', value=float(decay_steps))
206
            global_step = ops.elementwise_min(x=global_step, y=decay_steps_var)
207 208 209 210

        decayed_lr = (learning_rate - end_learning_rate) * \
                     ((1 - global_step / decay_steps) ** power) + end_learning_rate
    return decayed_lr
211 212


Y
Yu Yang 已提交
213
def piecewise_decay(boundaries, values):
214 215
    """Applies piecewise decay to the initial learning rate.

X
Xin Pan 已提交
216 217 218 219 220 221 222 223 224 225 226 227
      The algorithm can be described as the code below.

      .. code-block:: python

        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if step < 10000:
            learning_rate = 1.0
        elif 10000 <= step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1
X
Xin Pan 已提交
228 229 230 231 232 233 234 235
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
Xin Pan 已提交
236

237 238 239 240 241
    """

    if len(values) - len(boundaries) != 1:
        raise ValueError("len(values) - len(boundaries) should be 1")

Y
Yu Yang 已提交
242
    global_step = _decay_step_counter()
243

244
    with init_on_cpu():
245
        lr = tensor.create_global_var(
246 247 248 249 250 251
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate")

252
        with control_flow.Switch() as switch:
253
            for i in range(len(boundaries)):
254
                boundary_val = tensor.fill_constant(
255
                    shape=[1], dtype='float32', value=float(boundaries[i]))
256
                value_var = tensor.fill_constant(
257
                    shape=[1], dtype='float32', value=float(values[i]))
258
                with switch.case(global_step < boundary_val):
259 260
                    tensor.assign(value_var, lr)
            last_value_var = tensor.fill_constant(
261 262 263 264
                shape=[1],
                dtype='float32',
                value=float(values[len(values) - 1]))
            with switch.default():
265
                tensor.assign(last_value_var, lr)
266 267

    return lr
W
Wu Yi 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305


def append_LARS(params_grads, learning_rate, weight_decay):
    """Applies LARS (LAYER-WISE ADAPTIVE RATE SCALING) to learning rate for
       each layer.

    ```python
        learning_rate *= local_gw_ratio * sqrt(sumsq(param))
                        / (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param)))
    ```

    Args:
        learning_rate: A learning rate Variable. This
          is the global learning rate for LARS.
        weight_decay: A Python `float` number.

    Returns:
        The decayed learning rate
    """

    def _balanced_weight(param_norm, grad_norm):
        if weight_decay == 1.0:
            return grad_norm + param_norm
        else:
            return grad_norm + weight_decay * param_norm

    for param, grad in params_grads:
        param_lr = param.optimize_attr['learning_rate']
        param_norm = ops.sqrt(nn.reduce_sum(input=ops.square(param)))
        grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad)))
        if type(param_lr) == float and param_lr == 1.0:
            decayed_lr = learning_rate * param_norm \
                         / _balanced_weight(param_norm, grad_norm)
        else:
            decayed_lr = learning_rate * param_lr * param_norm \
                         / _balanced_weight(param_norm, grad_norm)
        # set back param local learning rate
        param.optimize_attr['learning_rate'] = decayed_lr