localsgd_optimizer.py 7.8 KB
Newer Older
Y
Yi Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
from paddle.fluid import program_guard, layers, default_main_program
Y
Yi Liu 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
from paddle.fluid.optimizer import Momentum, SGD
from .meta_optimizer_base import MetaOptimizerBase
from .common import OpRole, OP_ROLE_KEY, CollectiveHelper, is_update_op


class LocalSGDOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(LocalSGDOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = []
        self.snapshot_key = '@SNAPSHOT'

    def _can_apply(self):
        if not self.user_defined_strategy.localsgd:
            return False

        if self.role_maker.worker_num() <= 1:
            return False

        return isinstance(self.inner_opt, Momentum) \
                or isinstance(self.inner_opt, SGD)

    def _disable_strategy(self, dist_strategy):
        dist_strategy.localsgd = False
42
        dist_strategy.localsgd_configs = {}
Y
Yi Liu 已提交
43 44 45 46

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    def create_snapshot_vars(self, program):
        block = program.global_block()

        non_dist_params = []
        for param in block.iter_parameters():
            if not param.is_distributed:
                non_dist_params.append(param)

        p2s = []
        for param in non_dist_params:
            snapshot = block.create_var(
                name=self.snapshot_name(param.name),
                shape=param.shape,
                persistable=True,
                stop_gradient=True,
                dtype=param.dtype)
            p2s.append([param, snapshot])
        return p2s

    def init_snapshot_vars(self, startup_program, param2snapshot):
        with program_guard(startup_program):
            for param, snapshot in param2snapshot:
                layers.assign(param, snapshot)

Y
Yi Liu 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        minimized = self.inner_opt.minimize(
            loss, startup_program=startup_program)

        init_k_steps = self.user_defined_strategy.localsgd_configs['k_steps']
        auto_steps = self.user_defined_strategy.auto

        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        self.nrings = 2
        collective_helper = CollectiveHelper(self.role_maker, self.nrings)
        collective_helper.update_startup_program(startup_program)
89 90
        p2s = self.create_snapshot_vars(startup_program)
        self.init_snapshot_vars(startup_program, p2s)
Y
Yi Liu 已提交
91

92 93
        p2s = self.create_snapshot_vars(main_block.program)
        with program_guard(main_block.program, startup_program):
Y
Yi Liu 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
            step = layers.autoincreased_step_counter(begin=0)
            k_steps = layers.create_global_var(
                name="k_steps",
                shape=[1],
                value=init_k_steps,
                dtype='int64',
                persistable=True)
            last_step = layers.create_global_var(
                name="last_step",
                shape=[1],
                value=int(0),
                dtype='int64',
                persistable=True)

            if auto_steps:
109 110 111
                avg_loss = layers.collective._c_allreduce(
                    loss) / self.role_maker.worker_num()

Y
Yi Liu 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                lr_0 = layers.create_global_var(
                    name="lr_0",
                    shape=[1],
                    value=float(0),
                    dtype='float32',
                    persistable=True)
                loss_0 = layers.create_global_var(
                    name="loss_0",
                    shape=[1],
                    value=float(0),
                    dtype='float32',
                    persistable=True)

                global_lr = self.inner_opt._global_learning_rate()

                def initialize():
                    layers.assign(loss, loss_0)
                    layers.assign(global_lr, lr_0)

                layers.cond(step == 0, initialize)

            def communicate():
134
                sub_block = default_main_program().current_block()
Y
Yi Liu 已提交
135
                ring_id = -1
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                for param, snapshot in p2s:
                    sub_block.append_op(
                        type='elementwise_sub',
                        inputs={'X': [snapshot],
                                'Y': [param]},
                        outputs={'Out': [param]},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(
                        type='c_sync_calc_stream',
                        inputs={'X': param},
                        outputs={'Out': param},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    ring_id = (ring_id + 1) % self.nrings
                    sub_block.append_op(
                        type='c_allreduce_sum',
                        inputs={'X': [param]},
                        outputs={'Out': [param]},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Optimize
                        })
Y
Yi Liu 已提交
157 158

                for ring_id in range(self.nrings):
159
                    sub_block.append_op(
Y
Yi Liu 已提交
160 161 162 163 164 165 166 167
                        type='c_sync_comm_stream',
                        inputs={'X': param},
                        outputs={'Out': param},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Optimize
                        })

168 169
                for param, snapshot in p2s:
                    sub_block.append_op(
Y
Yi Liu 已提交
170 171 172 173 174 175 176
                        type='scale',
                        inputs={'X': [param]},
                        outputs={'Out': [param]},
                        attrs={
                            'scale': 1.0 / self.role_maker.worker_num(),
                            OP_ROLE_KEY: OpRole.Optimize
                        })
177
                    sub_block.append_op(
Y
Yi Liu 已提交
178 179 180 181 182
                        type='elementwise_sub',
                        inputs={'X': [snapshot],
                                'Y': [param]},
                        outputs={'Out': [param]},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})
183
                    sub_block.append_op(
Y
Yi Liu 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
                        type='assign',
                        inputs={'X': [param]},
                        outputs={'Out': [snapshot]},
                        attrs={OP_ROLE_KEY: OpRole.Optimize})

                if auto_steps:
                    next_local_steps = layers.cast(
                        layers.ceil(
                            layers.sqrt(lr_0 * loss / (global_lr * loss_0) *
                                        float(init_k_steps))),
                        dtype='int64')
                    max_local_steps = layers.fill_constant(
                        shape=[1], dtype='int64', value=16)
                    next_local_steps = layers.elementwise_min(next_local_steps,
                                                              max_local_steps)
                    layers.assign(next_local_steps, k_steps)
                layers.assign(step, last_step)

            layers.cond(step - last_step == k_steps, communicate)

        return minimized