unpooling.cu 6.1 KB
Newer Older
S
sweetsky0901 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sweetsky0901 已提交
15
#include "paddle/operators/math/unpooling.h"
S
sweetsky0901 已提交
16 17 18 19 20
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {
S
sweetsky0901 已提交
21
template <typename T>
S
sweetsky0901 已提交
22 23
__global__ void KernelUnpool2dMax(const int nthreads, const T* input_data,
                                  const int* indices_data,
S
sweetsky0901 已提交
24 25
                                  const int input_height,
                                  const int input_width,
S
sweetsky0901 已提交
26
                                  const int channels,
S
sweetsky0901 已提交
27 28 29
                                  T* output_data,
                                  const int output_height,
                                  const int output_width) {
S
sweetsky0901 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
  int in_n_stride = input_height * input_width * channels;
  int in_c_stride = input_height * input_width;
  int out_n_stride = output_height * output_width * channels;
  int out_c_stride = output_height * output_width;
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    int bidx = i / in_n_stride;
    int boffset = i % in_n_stride;
    int cidx = boffset / in_c_stride;
    int out_offset = bidx * out_n_stride + cidx * out_c_stride;
    int out_index = indices_data[i];
    PADDLE_ASSERT(out_index < out_c_stride);
    output_data[out_offset + out_index] = input_data[i];
  }
S
sweetsky0901 已提交
45
}
S
sweetsky0901 已提交
46
template <typename T>
S
sweetsky0901 已提交
47
__global__ void KernelUnpool2dMaxGrad(const int nthreads, const T* input_data,
S
sweetsky0901 已提交
48
                                      const int* indices_data,
S
sweetsky0901 已提交
49 50
                                      const int input_height,
                                      const int input_width,
S
sweetsky0901 已提交
51
                                      const int channels,
S
sweetsky0901 已提交
52 53 54 55 56
                                      const T* output_data,
                                      const T* output_grad,
                                      const int output_height,
                                      const int output_width,
                                      T* input_grad) {
S
sweetsky0901 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  int in_n_stride = input_height * input_width * channels;
  int in_c_stride = input_height * input_width;
  int out_n_stride = output_height * output_width * channels;
  int out_c_stride = output_height * output_width;
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    int bidx = i / in_n_stride;
    int boffset = i % in_n_stride;
    int cidx = boffset / in_c_stride;
    int out_offset = bidx * out_n_stride + cidx * out_c_stride;
    int out_index = indices_data[i];
    PADDLE_ASSERT(out_index < out_c_stride);
    input_grad[i] = output_grad[out_offset + out_index];
  }
S
sweetsky0901 已提交
72 73 74 75
}
/*
 * All tensors are in NCHW format.
 */
S
sweetsky0901 已提交
76 77
template <typename T>
class Unpool2dMaxFunctor<platform::GPUPlace, T> {
S
sweetsky0901 已提交
78
public:
S
sweetsky0901 已提交
79 80 81
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input,
                  const framework::Tensor& indices,
S
sweetsky0901 已提交
82
                  framework::Tensor* output) {
S
sweetsky0901 已提交
83 84 85 86 87 88 89
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
90
    const int* indices_data = indices.data<int>();
S
sweetsky0901 已提交
91
    T* output_data = output->mutable_data<T>(context.GetPlace());
92
    int threads = 1024;
S
sweetsky0901 已提交
93
    int grid = (input.numel() + threads - 1) / threads;
S
sweetsky0901 已提交
94
    KernelUnpool2dMax<
S
sweetsky0901 已提交
95
        T><<<grid, threads, 0,
S
sweetsky0901 已提交
96
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
S
sweetsky0901 已提交
97
                 .stream()>>>(input.numel(), input_data, indices_data,
S
sweetsky0901 已提交
98
                              input_height, input_width, output_channels,
S
sweetsky0901 已提交
99 100 101 102 103 104
                              output_data, output_height, output_width);
  }
};
/*
 * All tensors are in NCHW format.
 */
S
sweetsky0901 已提交
105 106
template <typename T>
class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
S
sweetsky0901 已提交
107
public:
S
sweetsky0901 已提交
108 109
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input,
S
sweetsky0901 已提交
110
                  const framework::Tensor& indices,
S
sweetsky0901 已提交
111
                  const framework::Tensor& output,
S
sweetsky0901 已提交
112
                  const framework::Tensor& output_grad,
S
sweetsky0901 已提交
113
                  framework::Tensor* input_grad) {
S
sweetsky0901 已提交
114 115 116 117 118 119 120
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
121
    const int* indices_data = indices.data<int>();
S
sweetsky0901 已提交
122 123 124
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
125
    int threads = 1024;
S
sweetsky0901 已提交
126
    int grid = (input.numel() + threads - 1) / threads;
S
sweetsky0901 已提交
127
    KernelUnpool2dMaxGrad<
S
sweetsky0901 已提交
128
        T><<<grid, threads, 0,
S
sweetsky0901 已提交
129
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
S
sweetsky0901 已提交
130
                 .stream()>>>(input.numel(), input_data, indices_data,
S
sweetsky0901 已提交
131
                              input_height, input_width, output_channels,
S
sweetsky0901 已提交
132
                              output_data, output_grad_data,
S
sweetsky0901 已提交
133
                              output_height, output_width, input_grad_data);
S
sweetsky0901 已提交
134 135
  }
};
S
sweetsky0901 已提交
136 137 138 139
template class Unpool2dMaxGradFunctor<platform::GPUPlace, float>;
template class Unpool2dMaxGradFunctor<platform::GPUPlace, double>;
template class Unpool2dMaxFunctor<platform::GPUPlace, float>;
template class Unpool2dMaxFunctor<platform::GPUPlace, double>;
S
sweetsky0901 已提交
140 141 142
}  // namespace math
}  // namespace operators
}  // namespace paddle