Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e2a5905e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e2a5905e
编写于
11月 22, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
gpu test ok unpool2dmax
上级
abb3357d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
38 addition
and
25 deletion
+38
-25
paddle/operators/math/unpooling.cc
paddle/operators/math/unpooling.cc
+0
-2
paddle/operators/math/unpooling.cu
paddle/operators/math/unpooling.cu
+28
-14
paddle/operators/math/unpooling.h
paddle/operators/math/unpooling.h
+0
-3
paddle/operators/unpool_op.cc
paddle/operators/unpool_op.cc
+0
-3
paddle/operators/unpool_op.h
paddle/operators/unpool_op.h
+7
-2
python/paddle/v2/fluid/tests/test_unpool_op.py
python/paddle/v2/fluid/tests/test_unpool_op.py
+3
-1
未找到文件。
paddle/operators/math/unpooling.cc
浏览文件 @
e2a5905e
...
...
@@ -37,8 +37,6 @@ class Unpool2dMaxFunctor<platform::CPUPlace, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
memset
(
output_data
,
0
,
\
sizeof
(
T
)
*
output_feasize
*
output_channels
*
batch_size
);
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
i
=
0
;
i
<
input_feasize
;
++
i
)
{
...
...
paddle/operators/math/unpooling.cu
浏览文件 @
e2a5905e
...
...
@@ -22,41 +22,56 @@ namespace math {
template
<
typename
T
>
__global__
void
KernelUnpool2dMax
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
*
indices_data
,
const
T
*
indices_data
,
const
int
input_height
,
const
int
input_width
,
const
int
channels
,
T
*
output_data
,
const
int
output_height
,
const
int
output_width
)
{
int
bsize
=
input_height
*
input_width
*
channels
;
int
csize
=
input_height
*
input_width
;
int
out_bsize
=
output_height
*
output_width
*
channels
;
int
out_csize
=
output_height
*
output_width
;
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
int
out_offset
=
i
/
(
input_height
*
input_width
)
\
*
output_height
*
output_width
;
int
bidx
=
i
/
bsize
;
int
boffset
=
i
%
bsize
;
int
cidx
=
boffset
/
csize
;
int
out_offset
=
bidx
*
out_bsize
+
cidx
*
out_csize
;
int
out_index
=
indices_data
[
i
];
PADDLE_ASSERT
(
out_index
<
(
output_height
*
output_width
));
printf
(
"-------%d------[%f]
\n
"
,
out_offset
+
out_index
,
input_data
[
i
]);
output_data
[
out_offset
+
out_index
]
=
input_data
[
i
];
}
}
template
<
typename
T
>
__global__
void
KernelUnpool2dMaxGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
*
indices_data
,
const
T
*
indices_data
,
const
int
input_height
,
const
int
input_width
,
const
int
channels
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
int
output_height
,
const
int
output_width
,
T
*
input_grad
)
{
int
bsize
=
input_height
*
input_width
*
channels
;
int
csize
=
input_height
*
input_width
;
int
out_bsize
=
output_height
*
output_width
*
channels
;
int
out_csize
=
output_height
*
output_width
;
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
int
out_offset
=
i
/
(
input_height
*
input_width
)
\
*
output_height
*
output_width
;
int
out_index
=
indices_data
[
i
];
PADDLE_ASSERT
(
out_index
<
(
output_height
*
output_width
));
input_grad
[
i
]
=
output_grad
[
out_offset
+
out_index
];
int
bidx
=
i
/
bsize
;
int
boffset
=
i
%
bsize
;
int
cidx
=
boffset
/
csize
;
int
out_offset
=
bidx
*
out_bsize
+
cidx
*
out_csize
;
int
out_index
=
indices_data
[
i
];
PADDLE_ASSERT
(
out_index
<
(
output_height
*
output_width
));
input_grad
[
i
]
=
output_grad
[
out_offset
+
out_index
];
}
}
/*
...
...
@@ -78,8 +93,7 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
output
->
numel
();
int
nthreads
=
batch_size
*
output_channels
*
input_height
*
input_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
...
...
@@ -88,7 +102,7 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_data
,
indices_data
,
input_height
,
input_width
,
input_height
,
input_width
,
output_channels
,
output_data
,
output_height
,
output_width
);
}
};
...
...
@@ -115,7 +129,7 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
output
.
numel
()
;
int
nthreads
=
batch_size
*
output_channels
*
input_height
*
input_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
...
...
@@ -125,7 +139,7 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_data
,
indices_data
,
input_height
,
input_width
,
input_height
,
input_width
,
output_channels
,
output_data
,
output_grad_data
,
output_height
,
output_width
,
input_grad_data
);
...
...
paddle/operators/math/unpooling.h
浏览文件 @
e2a5905e
...
...
@@ -21,9 +21,6 @@ namespace paddle {
namespace
operators
{
namespace
math
{
#define FLT_MAX \
__FLT_MAX__
template
<
typename
Place
,
typename
T
>
class
Unpool2dMaxFunctor
{
...
...
paddle/operators/unpool_op.cc
浏览文件 @
e2a5905e
...
...
@@ -108,9 +108,6 @@ class UnpoolOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) must not be null."
);
// PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must not be null.");
// PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
// "Input(Out@GRAD) should not be null");
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Input(X@GRAD) should not be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
...
...
paddle/operators/unpool_op.h
浏览文件 @
e2a5905e
...
...
@@ -29,11 +29,16 @@ class UnpoolKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
in_y
=
context
.
Input
<
Tensor
>
(
"Y"
);
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
std
::
string
unpoolingtype
=
context
.
Attr
<
std
::
string
>
(
"unpoolingtype"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
T
*
output_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
if
(
output_data
)
{
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
context
.
device_context
(),
out
,
static_cast
<
T
>
(
0
));
}
switch
(
ksize
.
size
())
{
case
2
:
{
if
(
unpoolingtype
==
"max"
)
{
...
...
@@ -66,7 +71,7 @@ class UnpoolGradKernel : public framework::OpKernel<T> {
if
(
in_x_grad
)
{
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
zero
(
device_ctx
,
in_x_grad
,
static_cast
<
T
>
(
0.0
));
}
}
switch
(
ksize
.
size
())
{
case
2
:
{
if
(
unpoolingtype
==
"max"
)
{
...
...
python/paddle/v2/fluid/tests/test_unpool_op.py
浏览文件 @
e2a5905e
...
...
@@ -54,6 +54,8 @@ class TestUnpoolOp(OpTest):
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
def
test_check_output
(
self
):
print
self
.
inputs
[
'X'
]
print
self
.
inputs
[
'Y'
]
print
self
.
outputs
[
'Out'
]
self
.
check_output
()
...
...
@@ -63,7 +65,7 @@ class TestUnpoolOp(OpTest):
def
init_test_case
(
self
):
self
.
Unpool2d_forward_naive
=
unpool2dmax_forward_naive
self
.
unpoolingtype
=
"max"
self
.
shape
=
[
10
,
2
,
5
,
5
]
self
.
shape
=
[
6
,
4
,
5
,
5
]
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
2
,
2
]
self
.
paddings
=
[
0
,
0
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录