test_label_semantic_roles.py 13.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import math

Q
Qiao Longfei 已提交
17
import numpy as np
18 19
import paddle
import paddle.dataset.conll05 as conll05
20 21
import paddle.fluid as fluid
from paddle.fluid.initializer import init_on_cpu
22
import contextlib
23
import time
24
import unittest
武毅 已提交
25
import os
Q
Qiao Longfei 已提交
26 27 28 29

word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
L
Liu Yiqun 已提交
30
pred_dict_len = len(verb_dict)
Q
Qiao Longfei 已提交
31 32 33 34 35 36 37 38 39 40

mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
mix_hidden_lr = 1e-3

IS_SPARSE = True
PASS_NUM = 10
41
BATCH_SIZE = 10
Q
Qiao Longfei 已提交
42 43 44 45 46 47 48 49 50 51

embedding_name = 'emb'


def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
        f.read(16)  # skip header.
        return np.fromfile(f, dtype=np.float32).reshape(h, w)


Y
Yu Yang 已提交
52 53
def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
            **ignored):
Q
Qiao Longfei 已提交
54
    # 8 features
55
    predicate_embedding = fluid.layers.embedding(
Q
Qiao Longfei 已提交
56
        input=predicate,
L
Liu Yiqun 已提交
57
        size=[pred_dict_len, word_dim],
F
fengjiayi 已提交
58
        dtype='float32',
Q
Qiao Longfei 已提交
59
        is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
60
        param_attr='vemb')
Q
Qiao Longfei 已提交
61

62
    mark_embedding = fluid.layers.embedding(
Q
Qiao Longfei 已提交
63 64
        input=mark,
        size=[mark_dict_len, mark_dim],
F
fengjiayi 已提交
65
        dtype='float32',
Q
Qiao Longfei 已提交
66 67 68 69
        is_sparse=IS_SPARSE)

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
70
        fluid.layers.embedding(
Q
Qiao Longfei 已提交
71 72
            size=[word_dict_len, word_dim],
            input=x,
Y
Yu Yang 已提交
73 74
            param_attr=fluid.ParamAttr(
                name=embedding_name, trainable=False)) for x in word_input
Q
Qiao Longfei 已提交
75 76 77 78 79
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0_layers = [
80
        fluid.layers.fc(input=emb, size=hidden_dim) for emb in emb_layers
Q
Qiao Longfei 已提交
81 82
    ]

83
    hidden_0 = fluid.layers.sums(input=hidden_0_layers)
Q
Qiao Longfei 已提交
84

85
    lstm_0 = fluid.layers.dynamic_lstm(
Q
Qiao Longfei 已提交
86 87 88 89 90 91 92 93 94 95
        input=hidden_0,
        size=hidden_dim,
        candidate_activation='relu',
        gate_activation='sigmoid',
        cell_activation='sigmoid')

    # stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
96 97 98
        mix_hidden = fluid.layers.sums(input=[
            fluid.layers.fc(input=input_tmp[0], size=hidden_dim),
            fluid.layers.fc(input=input_tmp[1], size=hidden_dim)
Q
Qiao Longfei 已提交
99 100
        ])

101
        lstm = fluid.layers.dynamic_lstm(
Q
Qiao Longfei 已提交
102 103 104 105 106 107 108 109 110
            input=mix_hidden,
            size=hidden_dim,
            candidate_activation='relu',
            gate_activation='sigmoid',
            cell_activation='sigmoid',
            is_reverse=((i % 2) == 1))

        input_tmp = [mix_hidden, lstm]

111 112 113
    feature_out = fluid.layers.sums(input=[
        fluid.layers.fc(input=input_tmp[0], size=label_dict_len),
        fluid.layers.fc(input=input_tmp[1], size=label_dict_len)
Q
Qiao Longfei 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127
    ])

    return feature_out


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
128
    res = fluid.LoDTensor()
Q
Qiao Longfei 已提交
129 130 131 132 133
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


134 135 136 137 138 139 140 141
def create_random_lodtensor(lod, place, low, high):
    data = np.random.random_integers(low, high, [lod[-1], 1]).astype("int64")
    res = fluid.LoDTensor()
    res.set(data, place)
    res.set_lod([lod])
    return res


武毅 已提交
142
def train(use_cuda, save_dirname=None, is_local=True):
Q
Qiao Longfei 已提交
143
    # define network topology
Y
Yu Yang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    word = fluid.layers.data(
        name='word_data', shape=[1], dtype='int64', lod_level=1)
    predicate = fluid.layers.data(
        name='verb_data', shape=[1], dtype='int64', lod_level=1)
    ctx_n2 = fluid.layers.data(
        name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1)
    ctx_n1 = fluid.layers.data(
        name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1)
    ctx_0 = fluid.layers.data(
        name='ctx_0_data', shape=[1], dtype='int64', lod_level=1)
    ctx_p1 = fluid.layers.data(
        name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1)
    ctx_p2 = fluid.layers.data(
        name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1)
    mark = fluid.layers.data(
        name='mark_data', shape=[1], dtype='int64', lod_level=1)
    feature_out = db_lstm(**locals())
    target = fluid.layers.data(
        name='target', shape=[1], dtype='int64', lod_level=1)
163
    crf_cost = fluid.layers.linear_chain_crf(
Q
Qiao Longfei 已提交
164 165
        input=feature_out,
        label=target,
Y
Yu Yang 已提交
166 167
        param_attr=fluid.ParamAttr(
            name='crfw', learning_rate=mix_hidden_lr))
Y
Yu Yang 已提交
168
    avg_cost = fluid.layers.mean(crf_cost)
Q
Qiao Longfei 已提交
169

Q
Qiao Longfei 已提交
170
    # TODO(qiao)
Q
Qiao Longfei 已提交
171
    # check other optimizers and check why out will be NAN
172
    sgd_optimizer = fluid.optimizer.SGD(
173
        learning_rate=fluid.layers.exponential_decay(
174 175 176
            learning_rate=0.0001,
            decay_steps=100000,
            decay_rate=0.5,
Y
Yu Yang 已提交
177
            staircase=True))
武毅 已提交
178
    optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
Q
Qiao Longfei 已提交
179

Q
Qiao Longfei 已提交
180 181 182
    # TODO(qiao)
    # add dependency track and move this config before optimizer
    crf_decode = fluid.layers.crf_decoding(
Q
Qiao Longfei 已提交
183 184
        input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))

G
guosheng 已提交
185
    chunk_evaluator = fluid.evaluator.ChunkEvaluator(
Q
Qiao Longfei 已提交
186
        input=crf_decode,
Q
Qiao Longfei 已提交
187
        label=target,
Q
Qiao Longfei 已提交
188 189
        chunk_scheme="IOB",
        num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0)))
Q
Qiao Longfei 已提交
190

Q
Qiao Longfei 已提交
191 192 193 194
    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.conll05.test(), buf_size=8192),
        batch_size=BATCH_SIZE)
195 196

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yu Yang 已提交
197 198 199 200 201
    feeder = fluid.DataFeeder(
        feed_list=[
            word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target
        ],
        place=place)
202
    exe = fluid.Executor(place)
Q
Qiao Longfei 已提交
203

武毅 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        embedding_param = fluid.global_scope().find_var(
            embedding_name).get_tensor()
        embedding_param.set(
            load_parameter(conll05.get_embedding(), word_dict_len, word_dim),
            place)

        start_time = time.time()
        batch_id = 0
        for pass_id in xrange(PASS_NUM):
            chunk_evaluator.reset(exe)
            for data in train_data():
                cost, precision, recall, f1_score = exe.run(
                    main_program,
                    feed=feeder.feed(data),
                    fetch_list=[avg_cost] + chunk_evaluator.metrics)
                pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval(
                    exe)

                if batch_id % 10 == 0:
                    print("avg_cost:" + str(cost) + " precision:" + str(
                        precision) + " recall:" + str(recall) + " f1_score:" +
                          str(f1_score) + " pass_precision:" + str(
                              pass_precision) + " pass_recall:" + str(
                                  pass_recall) + " pass_f1_score:" + str(
                                      pass_f1_score))
                    if batch_id != 0:
                        print("second per batch: " + str((time.time(
                        ) - start_time) / batch_id))
                    # Set the threshold low to speed up the CI test
                    if float(pass_precision) > 0.05:
                        if save_dirname is not None:
                            # TODO(liuyiqun): Change the target to crf_decode
                            fluid.io.save_inference_model(save_dirname, [
                                'word_data', 'verb_data', 'ctx_n2_data',
                                'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data',
                                'ctx_p2_data', 'mark_data'
                            ], [feature_out], exe)
                        return

                batch_id = batch_id + 1

    if is_local:
        train_loop(fluid.default_main_program())
    else:
        port = os.getenv("PADDLE_INIT_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_INIT_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("TRAINERS"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")
        t = fluid.DistributeTranspiler()
        t.transpile(
            optimize_ops,
            params_grads,
            trainer_id,
            pservers=pserver_endpoints,
            trainers=trainers)
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Q
Qiao Longfei 已提交
276 277


278 279 280 281 282 283 284
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        lod = [0, 4, 10]
        word = create_random_lodtensor(
            lod, place, low=0, high=word_dict_len - 1)
        pred = create_random_lodtensor(
            lod, place, low=0, high=pred_dict_len - 1)
        ctx_n2 = create_random_lodtensor(
            lod, place, low=0, high=word_dict_len - 1)
        ctx_n1 = create_random_lodtensor(
            lod, place, low=0, high=word_dict_len - 1)
        ctx_0 = create_random_lodtensor(
            lod, place, low=0, high=word_dict_len - 1)
        ctx_p1 = create_random_lodtensor(
            lod, place, low=0, high=word_dict_len - 1)
        ctx_p2 = create_random_lodtensor(
            lod, place, low=0, high=word_dict_len - 1)
        mark = create_random_lodtensor(
            lod, place, low=0, high=mark_dict_len - 1)

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == 'word_data'
        assert feed_target_names[1] == 'verb_data'
        assert feed_target_names[2] == 'ctx_n2_data'
        assert feed_target_names[3] == 'ctx_n1_data'
        assert feed_target_names[4] == 'ctx_0_data'
        assert feed_target_names[5] == 'ctx_p1_data'
        assert feed_target_names[6] == 'ctx_p2_data'
        assert feed_target_names[7] == 'mark_data'

        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: word,
                              feed_target_names[1]: pred,
                              feed_target_names[2]: ctx_n2,
                              feed_target_names[3]: ctx_n1,
                              feed_target_names[4]: ctx_0,
                              feed_target_names[5]: ctx_p1,
                              feed_target_names[6]: ctx_p2,
                              feed_target_names[7]: mark
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
        print(results[0].lod())
        np_data = np.array(results[0])
        print("Inference Shape: ", np_data.shape)
339 340


武毅 已提交
341
def main(use_cuda, is_local=True):
342 343 344 345 346 347
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "label_semantic_roles.inference.model"

武毅 已提交
348
    train(use_cuda, save_dirname, is_local)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    infer(use_cuda, save_dirname)


class TestLabelSemanticRoles(unittest.TestCase):
    def test_cuda(self):
        with self.scope_prog_guard():
            main(use_cuda=True)

    def test_cpu(self):
        with self.scope_prog_guard():
            main(use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


Q
Qiao Longfei 已提交
371
if __name__ == '__main__':
372
    unittest.main()