pass_manager_test.cc 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>

17 18 19
#include "paddle/fluid/ir/dialect/pd_dialect.h"
#include "paddle/fluid/ir/dialect/pd_type.h"
#include "paddle/fluid/ir/dialect/utils.h"
20
#include "paddle/fluid/ir/interface/op_yaml_info.h"
21 22
#include "paddle/ir/core/builtin_dialect.h"
#include "paddle/ir/core/builtin_op.h"
23 24 25 26 27
#include "paddle/ir/core/builtin_type.h"
#include "paddle/ir/core/dialect.h"
#include "paddle/ir/core/ir_context.h"
#include "paddle/ir/core/op_base.h"
#include "paddle/ir/core/operation.h"
28 29
#include "paddle/ir/pass/pass.h"
#include "paddle/ir/pass/pass_manager.h"
30
#include "paddle/phi/kernels/elementwise_add_kernel.h"
31

32
class AddOp : public ir::Op<AddOp> {
33 34
 public:
  using Op::Op;
35 36 37
  static const char *name() { return "test.add"; }
  static constexpr const char **attributes_name = nullptr;
  static constexpr uint32_t attributes_num = 0;
38
  static void Verify(const std::vector<ir::OpResult> &inputs,
39 40
                     const std::vector<ir::Type> &outputs,
                     const ir::AttributeMap &attributes) {
41 42 43 44 45
    if (inputs.size() != 2) {
      throw("The size of inputs must be equal to 2.");
    }
    if (outputs.size() != 1) {
      throw("The size of outputs must be equal to 1.");
46 47 48 49 50 51 52 53
    }
  }
};

class TestPass : public ir::Pass {
 public:
  TestPass() : ir::Pass("TestPass", 1) {}
  void Run(ir::Operation *op) override {
54 55 56 57 58
    auto module_op = op->dyn_cast<ir::ModuleOp>();
    CHECK_EQ(module_op.operation(), op);
    CHECK_EQ(module_op.name(), module_op->name());
    LOG(INFO) << "In " << pass_info().name << ": " << module_op->name()
              << std::endl;
59 60
  }

61 62
  bool CanApplyOn(ir::Operation *op) const override {
    return op->name() == "builtin.module" && op->num_regions() > 0;
63 64 65
  }
};

66
TEST(pass_manager_test, pass_manager) {
67
  // (1) Init environment.
68
  ir::IrContext *ctx = ir::IrContext::Instance();
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  ir::Dialect *builtin_dialect =
      ctx->GetOrRegisterDialect<ir::BuiltinDialect>();
  builtin_dialect->RegisterOp<AddOp>();
  ir::Dialect *paddle_dialect =
      ctx->GetOrRegisterDialect<paddle::dialect::PaddleDialect>();

  // (2) Create an empty program object
  ir::Program program(ctx);

  // (3) Create a float32 DenseTensor Parameter and save into Program
  ir::Type fp32_dtype = ir::Float32Type::get(ctx);
  paddle::dialect::DenseTensorTypeStorage::Dim dims = {2, 2};
  paddle::dialect::DenseTensorTypeStorage::DataLayout data_layout =
      paddle::dialect::DenseTensorTypeStorage::DataLayout::NCHW;
  paddle::dialect::DenseTensorTypeStorage::LoD lod = {{0, 1, 2}};
  size_t offset = 0;
  ir::Type dense_tensor_dtype = paddle::dialect::DenseTensorType::get(
      ctx, fp32_dtype, dims, data_layout, lod, offset);

  std::vector<float> data_a = {1, 2, 3, 4};
  std::unique_ptr<ir::Parameter> parameter_a =
      std::make_unique<ir::Parameter>(reinterpret_cast<void *>(data_a.data()),
                                      4 * sizeof(float),
                                      dense_tensor_dtype);
  program.SetParameter("a", std::move(parameter_a));
  EXPECT_EQ(program.parameters_num() == 1, true);

  std::vector<float> data_b = {5, 6, 7, 8};
  std::unique_ptr<ir::Parameter> parameter_b =
      std::make_unique<ir::Parameter>(reinterpret_cast<void *>(data_b.data()),
                                      4 * sizeof(float),
                                      dense_tensor_dtype);
  program.SetParameter("b", std::move(parameter_b));
  EXPECT_EQ(program.parameters_num() == 2, true);

  // (4) Def a = GetParameterOp("a"), and create DenseTensor for a.
  std::string op1_name = ir::GetParameterOp::name();
  ir::OpInfo op1_info = ctx->GetRegisteredOpInfo(op1_name);
  std::unordered_map<std::string, ir::Attribute> op1_attribute{
      {"parameter_name", ir::StrAttribute::get(ctx, "a")}};
  ir::Operation *op1 =
110
      ir::Operation::Create({}, op1_attribute, {dense_tensor_dtype}, op1_info);
111 112 113 114

  ir::Block *block = program.block();
  block->push_back(op1);

115
  EXPECT_EQ(&program.module_op()->GetRegion(0), block->GetParent());
116 117 118 119 120

  EXPECT_EQ(program.module_op(), block->GetParentOp());

  EXPECT_EQ(&program, op1->GetParentProgram());

121
  EXPECT_EQ(op1->result(0).type().dialect().id(), paddle_dialect->id());
122
  using Interface = paddle::dialect::ParameterConvertInterface;
123 124
  Interface *a_interface =
      op1->result(0).type().dialect().GetRegisteredInterface<Interface>();
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  std::shared_ptr<paddle::framework::Variable> a_var =
      a_interface->ParameterToVariable(program.GetParameter("a"));
  const phi::DenseTensor &a_tensor = a_var->Get<phi::DenseTensor>();
  EXPECT_EQ(a_tensor.numel(), 4);
  EXPECT_EQ(a_tensor.dims(), dims);
  EXPECT_EQ(a_tensor.dtype(), paddle::dialect::TransToPhiDataType(fp32_dtype));
  EXPECT_EQ(a_tensor.layout(), data_layout);
  EXPECT_EQ(a_tensor.lod(), lod);
  EXPECT_EQ(a_tensor.offset(), offset);
  for (int64_t i = 0; i < a_tensor.numel(); i++) {
    EXPECT_EQ(*(a_tensor.data<float>() + i), data_a[i]);
  }

  // (5) Def b = GetParameterOp("b"), and create DenseTensor for b.
  std::string op2_name =
      builtin_dialect->name() + "." + std::string(ir::GetParameterOp::name());
  ir::OpInfo op2_info = ctx->GetRegisteredOpInfo(op2_name);
  std::unordered_map<std::string, ir::Attribute> op2_attribute{
      {"parameter_name", ir::StrAttribute::get(ctx, "b")}};
  ir::Operation *op2 =
145
      ir::Operation::Create({}, op2_attribute, {dense_tensor_dtype}, op2_info);
146 147
  block->push_back(op2);

148 149 150
  EXPECT_EQ(op2->result(0).type().dialect().id(), paddle_dialect->id());
  Interface *b_interface =
      op2->result(0).type().dialect().GetRegisteredInterface<Interface>();
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
  std::shared_ptr<paddle::framework::Variable> b_var =
      b_interface->ParameterToVariable(program.GetParameter("b"));
  const phi::DenseTensor &b_tensor = b_var->Get<phi::DenseTensor>();
  EXPECT_EQ(b_tensor.numel(), 4);
  EXPECT_EQ(b_tensor.dims(), dims);
  EXPECT_EQ(b_tensor.dtype(), paddle::dialect::TransToPhiDataType(fp32_dtype));
  EXPECT_EQ(b_tensor.layout(), data_layout);
  EXPECT_EQ(b_tensor.lod(), lod);
  EXPECT_EQ(b_tensor.offset(), offset);
  for (int64_t i = 0; i < b_tensor.numel(); i++) {
    EXPECT_EQ(*(b_tensor.data<float>() + i), data_b[i]);
  }

  // (6) Def c = AddOp(a, b), execute this op.
  std::string op3_name =
      builtin_dialect->name() + "." + std::string(AddOp::name());
  ir::OpInfo op3_info = ctx->GetRegisteredOpInfo(op3_name);
  std::unordered_map<std::string, ir::Attribute> op3_attribute;
169 170 171 172
  ir::Operation *op3 = ir::Operation::Create({op1->result(0), op2->result(0)},
                                             op3_attribute,
                                             {dense_tensor_dtype},
                                             op3_info);
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  block->push_back(op3);

  phi::CPUContext *dev_ctx = static_cast<phi::CPUContext *>(
      paddle::platform::DeviceContextPool::Instance().Get(
          paddle::platform::CPUPlace()));
  phi::DenseTensor c_tensor =
      phi::Add<float, phi::CPUContext>(*dev_ctx, a_tensor, b_tensor);
  std::shared_ptr<paddle::framework::Variable> variable_c =
      std::make_shared<paddle::framework::Variable>();
  auto *dst_tensor = variable_c->GetMutable<phi::DenseTensor>();
  *dst_tensor = c_tensor;
  EXPECT_EQ(dst_tensor->numel(), b_tensor.numel());
  EXPECT_EQ(dst_tensor->dims(), b_tensor.dims());
  EXPECT_EQ(dst_tensor->dtype(), b_tensor.dtype());
  EXPECT_EQ(dst_tensor->layout(), b_tensor.layout());
  EXPECT_EQ(dst_tensor->lod(), b_tensor.lod());
  EXPECT_EQ(dst_tensor->offset(), b_tensor.offset());
  for (int64_t i = 0; i < dst_tensor->numel(); i++) {
    EXPECT_EQ(*(dst_tensor->data<float>() + i), data_a[i] + data_b[i]);
  }

  // (7) Def AbsOp(b)
  ir::OpInfo abs_info = ctx->GetRegisteredOpInfo("pd.abs");
196
  std::vector<ir::OpResult> operands = {op1->result(0)};
197 198 199 200 201 202
  std::unordered_map<std::string, ir::Attribute> abs_op_attribute;
  std::vector<ir::Type> output_types = {dense_tensor_dtype};
  ir::OperationArgument abs_argument(abs_info);
  abs_argument.AddOperands(operands.begin(), operands.end());
  abs_argument.AddAttributes(abs_op_attribute.begin(), abs_op_attribute.end());
  abs_argument.AddTypes(output_types.begin(), output_types.end());
203
  ir::Operation *abs_op = ir::Operation::Create(std::move(abs_argument));
204 205
  paddle::dialect::OpYamlInfoInterface interface =
      abs_op->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
206 207 208 209 210 211 212 213 214
  EXPECT_EQ(std::get<0>(interface.GetOpInfo())[0].name == "x", true);

  // (8) Def SetParameterOp(c, "c")
  std::string op4_name =
      builtin_dialect->name() + "." + std::string(ir::SetParameterOp::name());
  ir::OpInfo op4_info = ctx->GetRegisteredOpInfo(op4_name);
  std::unordered_map<std::string, ir::Attribute> op4_attribute{
      {"parameter_name", ir::StrAttribute::get(ctx, "c")}};

215
  ir::OperationArgument op4_argument({op3->result(0)}, {}, {}, op4_info);
216
  op4_argument.AddAttributes(op4_attribute.begin(), op4_attribute.end());
217
  ir::Operation *op4 = ir::Operation::Create(std::move(op4_argument));
218 219
  block->push_back(op4);

220
  EXPECT_EQ(op4->operand(0).source().type().dialect().id(),
221
            paddle_dialect->id());
222
  Interface *c_interface = op4->operand(0)
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
                               .source()
                               .type()
                               .dialect()
                               .GetRegisteredInterface<Interface>();
  //   ir::Parameter *parameter_c =
  //       c_interface->VariableToParameter(variable_c.get());
  std::unique_ptr<ir::Parameter> parameter_c =
      c_interface->VariableToParameter(variable_c.get());
  EXPECT_EQ(parameter_c->type(), dense_tensor_dtype);
  for (int64_t i = 0; i < dst_tensor->numel(); i++) {
    EXPECT_EQ(*(dst_tensor->data<float>() + i),
              *(static_cast<float *>(parameter_c->data()) + i));
  }
  program.SetParameter("c", std::move(parameter_c));

  // (8) Traverse Program
  EXPECT_EQ(program.block()->size() == 4, true);
  EXPECT_EQ(program.parameters_num() == 3, true);

  // (9) Test pass manager for program.
243
  ir::PassManager pm(ctx);
244

245
  pm.AddPass(std::make_unique<TestPass>());
246

247 248
  pm.EnableIRPrinting(std::make_unique<ir::PassManager::IRPrinterOption>(
      [](ir::Pass *pass, ir::Operation *op) {
249
        return pass->name() == "TestPass";
250 251
      },
      [](ir::Pass *pass, ir::Operation *op) {
252
        return pass->name() == "TestPass";
253 254
      },
      true,
255 256 257
      true));

  pm.EnablePassTiming(true);
258

259
  CHECK_EQ(pm.Run(&program), true);
260
}