pass_manager_test.cc 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>

17 18 19
#include "paddle/fluid/ir/dialect/pd_dialect.h"
#include "paddle/fluid/ir/dialect/pd_type.h"
#include "paddle/fluid/ir/dialect/utils.h"
20
#include "paddle/fluid/ir/interface/op_yaml_info.h"
21 22
#include "paddle/ir/core/builtin_dialect.h"
#include "paddle/ir/core/builtin_op.h"
23 24 25 26 27
#include "paddle/ir/core/builtin_type.h"
#include "paddle/ir/core/dialect.h"
#include "paddle/ir/core/ir_context.h"
#include "paddle/ir/core/op_base.h"
#include "paddle/ir/core/operation.h"
28 29
#include "paddle/ir/pass/pass.h"
#include "paddle/ir/pass/pass_manager.h"
30
#include "paddle/phi/kernels/elementwise_add_kernel.h"
31

32
class AddOp : public ir::Op<AddOp> {
33 34
 public:
  using Op::Op;
35 36 37
  static const char *name() { return "test.add"; }
  static constexpr const char **attributes_name = nullptr;
  static constexpr uint32_t attributes_num = 0;
38
  static void Verify(const std::vector<ir::OpResult> &inputs,
39 40
                     const std::vector<ir::Type> &outputs,
                     const ir::AttributeMap &attributes) {
41 42 43 44 45
    if (inputs.size() != 2) {
      throw("The size of inputs must be equal to 2.");
    }
    if (outputs.size() != 1) {
      throw("The size of outputs must be equal to 1.");
46 47 48 49 50 51 52 53
    }
  }
};

class TestPass : public ir::Pass {
 public:
  TestPass() : ir::Pass("TestPass", 1) {}
  void Run(ir::Operation *op) override {
54 55 56 57 58
    auto module_op = op->dyn_cast<ir::ModuleOp>();
    CHECK_EQ(module_op.operation(), op);
    CHECK_EQ(module_op.name(), module_op->name());
    LOG(INFO) << "In " << pass_info().name << ": " << module_op->name()
              << std::endl;
59 60
  }

61 62
  bool CanApplyOn(ir::Operation *op) const override {
    return op->name() == "builtin.module" && op->num_regions() > 0;
63 64 65
  }
};

66
TEST(pass_manager_test, pass_manager) {
67
  // (1) Init environment.
68
  ir::IrContext *ctx = ir::IrContext::Instance();
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  ir::Dialect *builtin_dialect =
      ctx->GetOrRegisterDialect<ir::BuiltinDialect>();
  builtin_dialect->RegisterOp<AddOp>();
  ir::Dialect *paddle_dialect =
      ctx->GetOrRegisterDialect<paddle::dialect::PaddleDialect>();

  // (2) Create an empty program object
  ir::Program program(ctx);

  // (3) Create a float32 DenseTensor Parameter and save into Program
  ir::Type fp32_dtype = ir::Float32Type::get(ctx);
  paddle::dialect::DenseTensorTypeStorage::Dim dims = {2, 2};
  paddle::dialect::DenseTensorTypeStorage::DataLayout data_layout =
      paddle::dialect::DenseTensorTypeStorage::DataLayout::NCHW;
  paddle::dialect::DenseTensorTypeStorage::LoD lod = {{0, 1, 2}};
  size_t offset = 0;
  ir::Type dense_tensor_dtype = paddle::dialect::DenseTensorType::get(
      ctx, fp32_dtype, dims, data_layout, lod, offset);

  std::vector<float> data_a = {1, 2, 3, 4};
  std::unique_ptr<ir::Parameter> parameter_a =
      std::make_unique<ir::Parameter>(reinterpret_cast<void *>(data_a.data()),
                                      4 * sizeof(float),
                                      dense_tensor_dtype);
  program.SetParameter("a", std::move(parameter_a));
  EXPECT_EQ(program.parameters_num() == 1, true);

  std::vector<float> data_b = {5, 6, 7, 8};
  std::unique_ptr<ir::Parameter> parameter_b =
      std::make_unique<ir::Parameter>(reinterpret_cast<void *>(data_b.data()),
                                      4 * sizeof(float),
                                      dense_tensor_dtype);
  program.SetParameter("b", std::move(parameter_b));
  EXPECT_EQ(program.parameters_num() == 2, true);

  // (4) Def a = GetParameterOp("a"), and create DenseTensor for a.
  std::string op1_name = ir::GetParameterOp::name();
  ir::OpInfo op1_info = ctx->GetRegisteredOpInfo(op1_name);
  std::unordered_map<std::string, ir::Attribute> op1_attribute{
      {"parameter_name", ir::StrAttribute::get(ctx, "a")}};
  ir::Operation *op1 =
110
      ir::Operation::Create({}, op1_attribute, {dense_tensor_dtype}, op1_info);
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

  ir::Block *block = program.block();
  block->push_back(op1);

  EXPECT_EQ(&program.module_op()->GetRegion(0), block->GetParentRegion());

  EXPECT_EQ(program.module_op(), block->GetParentOp());

  EXPECT_EQ(&program, op1->GetParentProgram());

  EXPECT_EQ(op1->GetResultByIndex(0).type().dialect().id(),
            paddle_dialect->id());
  using Interface = paddle::dialect::ParameterConvertInterface;
  Interface *a_interface = op1->GetResultByIndex(0)
                               .type()
                               .dialect()
                               .GetRegisteredInterface<Interface>();
  std::shared_ptr<paddle::framework::Variable> a_var =
      a_interface->ParameterToVariable(program.GetParameter("a"));
  const phi::DenseTensor &a_tensor = a_var->Get<phi::DenseTensor>();
  EXPECT_EQ(a_tensor.numel(), 4);
  EXPECT_EQ(a_tensor.dims(), dims);
  EXPECT_EQ(a_tensor.dtype(), paddle::dialect::TransToPhiDataType(fp32_dtype));
  EXPECT_EQ(a_tensor.layout(), data_layout);
  EXPECT_EQ(a_tensor.lod(), lod);
  EXPECT_EQ(a_tensor.offset(), offset);
  for (int64_t i = 0; i < a_tensor.numel(); i++) {
    EXPECT_EQ(*(a_tensor.data<float>() + i), data_a[i]);
  }

  // (5) Def b = GetParameterOp("b"), and create DenseTensor for b.
  std::string op2_name =
      builtin_dialect->name() + "." + std::string(ir::GetParameterOp::name());
  ir::OpInfo op2_info = ctx->GetRegisteredOpInfo(op2_name);
  std::unordered_map<std::string, ir::Attribute> op2_attribute{
      {"parameter_name", ir::StrAttribute::get(ctx, "b")}};
  ir::Operation *op2 =
148
      ir::Operation::Create({}, op2_attribute, {dense_tensor_dtype}, op2_info);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  block->push_back(op2);

  EXPECT_EQ(op2->GetResultByIndex(0).type().dialect().id(),
            paddle_dialect->id());
  Interface *b_interface = op2->GetResultByIndex(0)
                               .type()
                               .dialect()
                               .GetRegisteredInterface<Interface>();
  std::shared_ptr<paddle::framework::Variable> b_var =
      b_interface->ParameterToVariable(program.GetParameter("b"));
  const phi::DenseTensor &b_tensor = b_var->Get<phi::DenseTensor>();
  EXPECT_EQ(b_tensor.numel(), 4);
  EXPECT_EQ(b_tensor.dims(), dims);
  EXPECT_EQ(b_tensor.dtype(), paddle::dialect::TransToPhiDataType(fp32_dtype));
  EXPECT_EQ(b_tensor.layout(), data_layout);
  EXPECT_EQ(b_tensor.lod(), lod);
  EXPECT_EQ(b_tensor.offset(), offset);
  for (int64_t i = 0; i < b_tensor.numel(); i++) {
    EXPECT_EQ(*(b_tensor.data<float>() + i), data_b[i]);
  }

  // (6) Def c = AddOp(a, b), execute this op.
  std::string op3_name =
      builtin_dialect->name() + "." + std::string(AddOp::name());
  ir::OpInfo op3_info = ctx->GetRegisteredOpInfo(op3_name);
  std::unordered_map<std::string, ir::Attribute> op3_attribute;
175
  ir::Operation *op3 = ir::Operation::Create(
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
      {op1->GetResultByIndex(0), op2->GetResultByIndex(0)},
      op3_attribute,
      {dense_tensor_dtype},
      op3_info);
  block->push_back(op3);

  phi::CPUContext *dev_ctx = static_cast<phi::CPUContext *>(
      paddle::platform::DeviceContextPool::Instance().Get(
          paddle::platform::CPUPlace()));
  phi::DenseTensor c_tensor =
      phi::Add<float, phi::CPUContext>(*dev_ctx, a_tensor, b_tensor);
  std::shared_ptr<paddle::framework::Variable> variable_c =
      std::make_shared<paddle::framework::Variable>();
  auto *dst_tensor = variable_c->GetMutable<phi::DenseTensor>();
  *dst_tensor = c_tensor;
  EXPECT_EQ(dst_tensor->numel(), b_tensor.numel());
  EXPECT_EQ(dst_tensor->dims(), b_tensor.dims());
  EXPECT_EQ(dst_tensor->dtype(), b_tensor.dtype());
  EXPECT_EQ(dst_tensor->layout(), b_tensor.layout());
  EXPECT_EQ(dst_tensor->lod(), b_tensor.lod());
  EXPECT_EQ(dst_tensor->offset(), b_tensor.offset());
  for (int64_t i = 0; i < dst_tensor->numel(); i++) {
    EXPECT_EQ(*(dst_tensor->data<float>() + i), data_a[i] + data_b[i]);
  }

  // (7) Def AbsOp(b)
  ir::OpInfo abs_info = ctx->GetRegisteredOpInfo("pd.abs");
  std::vector<ir::OpResult> operands = {op1->GetResultByIndex(0)};
  std::unordered_map<std::string, ir::Attribute> abs_op_attribute;
  std::vector<ir::Type> output_types = {dense_tensor_dtype};
  ir::OperationArgument abs_argument(abs_info);
  abs_argument.AddOperands(operands.begin(), operands.end());
  abs_argument.AddAttributes(abs_op_attribute.begin(), abs_op_attribute.end());
  abs_argument.AddTypes(output_types.begin(), output_types.end());
210
  ir::Operation *abs_op = ir::Operation::Create(std::move(abs_argument));
211 212
  paddle::dialect::OpYamlInfoInterface interface =
      abs_op->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
213 214 215 216 217 218 219 220 221 222 223 224
  EXPECT_EQ(std::get<0>(interface.GetOpInfo())[0].name == "x", true);

  // (8) Def SetParameterOp(c, "c")
  std::string op4_name =
      builtin_dialect->name() + "." + std::string(ir::SetParameterOp::name());
  ir::OpInfo op4_info = ctx->GetRegisteredOpInfo(op4_name);
  std::unordered_map<std::string, ir::Attribute> op4_attribute{
      {"parameter_name", ir::StrAttribute::get(ctx, "c")}};

  ir::OperationArgument op4_argument(
      {op3->GetResultByIndex(0)}, {}, {}, op4_info);
  op4_argument.AddAttributes(op4_attribute.begin(), op4_attribute.end());
225
  ir::Operation *op4 = ir::Operation::Create(std::move(op4_argument));
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  block->push_back(op4);

  EXPECT_EQ(op4->GetOperandByIndex(0).source().type().dialect().id(),
            paddle_dialect->id());
  Interface *c_interface = op4->GetOperandByIndex(0)
                               .source()
                               .type()
                               .dialect()
                               .GetRegisteredInterface<Interface>();
  //   ir::Parameter *parameter_c =
  //       c_interface->VariableToParameter(variable_c.get());
  std::unique_ptr<ir::Parameter> parameter_c =
      c_interface->VariableToParameter(variable_c.get());
  EXPECT_EQ(parameter_c->type(), dense_tensor_dtype);
  for (int64_t i = 0; i < dst_tensor->numel(); i++) {
    EXPECT_EQ(*(dst_tensor->data<float>() + i),
              *(static_cast<float *>(parameter_c->data()) + i));
  }
  program.SetParameter("c", std::move(parameter_c));

  // (8) Traverse Program
  EXPECT_EQ(program.block()->size() == 4, true);
  EXPECT_EQ(program.parameters_num() == 3, true);

  // (9) Test pass manager for program.
251
  ir::PassManager pm(ctx);
252

253
  pm.AddPass(std::make_unique<TestPass>());
254

255 256
  pm.EnableIRPrinting(std::make_unique<ir::PassManager::IRPrinterOption>(
      [](ir::Pass *pass, ir::Operation *op) {
257
        return pass->name() == "TestPass";
258 259
      },
      [](ir::Pass *pass, ir::Operation *op) {
260
        return pass->name() == "TestPass";
261 262
      },
      true,
263 264 265
      true));

  pm.EnablePassTiming(true);
266

267
  CHECK_EQ(pm.Run(&program), true);
268
}