op_converter.h 10.3 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <map>
F
flame 已提交
18 19 20 21
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
22
#include <vector>
F
flame 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include "framework/core/types.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/anakin/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "saber/saber_types.h"

namespace paddle {
namespace inference {
namespace anakin {

35
template <typename TargetT, ::anakin::Precision PrecisionT>
F
flame 已提交
36
class AnakinOpConverter {
37 38
  using AnakinEngineT = AnakinEngine<TargetT, PrecisionT>;

F
flame 已提交
39 40 41 42
 public:
  AnakinOpConverter() = default;

  virtual void operator()(const framework::proto::OpDesc &op,
43
                          const framework::BlockDesc &block_desc,
F
flame 已提交
44 45
                          const framework::Scope &scope, bool test_mode) {}
  void ConvertOp(const framework::proto::OpDesc &op,
46
                 const framework::BlockDesc &block_desc,
F
flame 已提交
47
                 const std::unordered_set<std::string> &parameters,
48
                 const framework::Scope &scope, AnakinEngineT *engine,
F
flame 已提交
49 50 51
                 bool test_mode = false) {
    framework::OpDesc op_desc(op, nullptr);
    std::string op_type = op_desc.Type();
52
    AnakinOpConverter *it = nullptr;
N
nhzlx 已提交
53
    if (op_type == "depthwise_conv2d") op_type = "conv2d";
54 55 56 57
    if (op_type == "reshape2") op_type = "reshape";
    if (op_type == "transpose2") op_type = "transpose";
    if (op_type == "flatten2") op_type = "flatten";

F
flame 已提交
58
    if (!it) {
59
      it = Registry<AnakinOpConverter>::Global().Lookup(op_type);
F
flame 已提交
60 61 62
    }
    PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]", op_type);
    it->SetEngine(engine);
63
    (*it)(op, block_desc, scope, test_mode);
F
flame 已提交
64 65
  }

66
  void ConvertBlock(framework::BlockDesc *block_desc,
F
flame 已提交
67
                    const std::unordered_set<std::string> &parameters,
68
                    const framework::Scope &scope, AnakinEngineT *engine) {
F
flame 已提交
69
    std::unique_lock<std::mutex> lock(mutex_);
70 71 72 73
    framework::proto::BlockDesc *block = block_desc->Proto();
    for (auto i = 0; i < block->ops_size(); i++) {
      auto &op = block->ops(i);
      ConvertOp(op, *block_desc, parameters, scope, engine);
F
flame 已提交
74 75
    }
  }
76 77 78

  // The scope  here should be inited with the parameter vars.
  void ConvertBlockToAnakinEngine(
79
      framework::BlockDesc *block_desc, framework::Scope *scope,
80 81
      const std::vector<std::string> &inputs,
      const std::unordered_set<std::string> &parameters,
82
      const std::vector<std::string> &outputs, AnakinEngineT *engine) {
83
    ConvertBlock(block_desc, parameters, *scope, engine);
84 85 86 87 88 89 90 91 92
    // if the max_batch size
    int max_batch_size = engine->GetMaxBatchSize();
    PADDLE_ENFORCE(max_batch_size > 0,
                   "the max_batch_size setted from config->EnableAnakinEngine "
                   "must largger than 0");
    // If the user does not specify this variable, we use the input shape from
    // the block_desc.
    auto max_input_shape = engine->GetMaxInputShape();
    std::map<std::string, std::vector<int>> temp_max_input_shape;
93 94 95 96 97 98 99 100 101 102 103 104
    // Register outputs with anakin using the RegistVar interface before Freeze.
    // Note that RegistVar's parameters can only be outputs, not inputs.
    for (auto &output : outputs) {
      engine->Graph()->RegistVar(output);
    }
    engine->Freeze();
    // Add scale for tensor in int8 mode.
    auto tensor_scales = engine->GetTensorScales();

    for (auto &item : tensor_scales) {
      engine->Graph()->SetVarScale(item.first, item.second);
    }
105

106 107 108
    for (auto &input : inputs) {
      if (parameters.count(input)) continue;
      std::vector<int> input_shape;
109 110 111 112
      input_shape.resize(4);
      input_shape[0] = max_batch_size;
      if (max_input_shape.count(input)) {
        PADDLE_ENFORCE(max_input_shape[input].size() == 4,
113
                       "the dimensions of max_input_shape setted from "
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
                       "config->EnableAnakinEngine must be 4");
        for (int i = 1; i < 4; i++) {
          input_shape[i] = max_input_shape[input][i];
        }
      } else {
        auto *var = block_desc->FindVar(input);
        PADDLE_ENFORCE(var, "no variable called %s", input);

        auto var_shape = var->GetShape();
        std::cout << "input :" << input << std::endl;
        PADDLE_ENFORCE(var_shape.size() == 4);

        for (size_t i = 1; i < var_shape.size(); i++) {
          input_shape[i] = var_shape[i];
        }
129
      }
130
      temp_max_input_shape[input] = input_shape;
131 132
      engine->SetInputShape(input, input_shape);
    }
133
    engine->SetMaxInputShape(temp_max_input_shape);
134
    engine->Optimize();
135
    engine->InitNet();
136 137
  }

138
  void SetEngine(AnakinEngineT *engine) { engine_ = engine; }
F
flame 已提交
139 140 141 142
  virtual ~AnakinOpConverter() {}

 protected:
  bool test_mode_;
143
  AnakinEngineT *engine_{nullptr};
F
flame 已提交
144 145

 private:
146 147
  std::unordered_map<std::string, AnakinOpConverter<TargetT, PrecisionT> *>
      converters_;
F
flame 已提交
148 149 150 151
  framework::Scope *scope_{nullptr};
  std::mutex mutex_;
};

152 153 154 155
template class AnakinOpConverter<::anakin::saber::NV,
                                 ::anakin::Precision::FP32>;
template class AnakinOpConverter<::anakin::saber::NV,
                                 ::anakin::Precision::INT8>;
156
#ifdef ANAKIN_X86_PLACE
157 158 159 160
template class AnakinOpConverter<::anakin::saber::X86,
                                 ::anakin::Precision::FP32>;
template class AnakinOpConverter<::anakin::saber::X86,
                                 ::anakin::Precision::INT8>;
161
#endif
F
flame 已提交
162 163 164 165
}  // namespace anakin
}  // namespace inference
}  // namespace paddle

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#define REGISTER_ANAKIN_OP_CONVERTER_BASE(op_type__, Converter__,              \
                                          place_type__, place_class__,         \
                                          precision_type__, precision_class__) \
  struct anakin_##op_type__##_##place_type__##_##precision_type__##_converter  \
      : public ::paddle::framework::Registrar {                                \
    anakin_##op_type__##_##place_type__##_##precision_type__##_converter() {   \
      LOG(INFO) << "register convert " << #op_type__ << " ";                   \
      ::paddle::inference::Registry<                                           \
          ::paddle::inference::anakin::AnakinOpConverter<                      \
              place_class__, precision_class__>>::Global()                     \
          .Register<Converter__>(#op_type__);                                  \
    }                                                                          \
  };                                                                           \
  anakin_##op_type__##_##place_type__##_##precision_type__##_converter         \
      anakin_##op_type__##_##place_type__##_##precision_type__##_converter__;  \
  int Touch_anakin_##op_type__##_##place_type__##_##precision_type__() {       \
    anakin_##op_type__##_##place_type__##_##precision_type__##_converter__     \
        .Touch();                                                              \
    return 0;                                                                  \
F
flame 已提交
185 186
  }

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#define WRAP(...) __VA_ARGS__

#define REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__,       \
                                          precision_type__)             \
  REGISTER_ANAKIN_OP_CONVERTER_BASE(                                    \
      op_type__,                                                        \
      ::paddle::inference::anakin::Converter__<WRAP(                    \
          ::anakin::saber::NV, ::anakin::Precision::precision_type__)>, \
      CUDA, ::anakin::saber::NV, precision_type__,                      \
      ::anakin::Precision::precision_type__)

#define REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__,         \
                                         precision_type__)               \
  REGISTER_ANAKIN_OP_CONVERTER_BASE(                                     \
      op_type__,                                                         \
      ::paddle::inference::anakin::Converter__<WRAP(                     \
          ::anakin::saber::X86, ::anakin::Precision::precision_type__)>, \
      CPU, ::anakin::saber::X86, precision_type__,                       \
      ::anakin::Precision::precision_type__)

207
#if defined(PADDLE_WITH_CUDA) && defined(ANAKIN_X86_PLACE)
208 209 210 211 212
#define REGISTER_ANAKIN_OP_CONVERTER(op_type__, Converter__)       \
  REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32); \
  REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8); \
  REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32);  \
  REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8)
213 214 215 216
#elif defined(PADDLE_WITH_CUDA)
#define REGISTER_ANAKIN_OP_CONVERTER(op_type__, Converter__)       \
  REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32); \
  REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8)
217 218 219 220 221 222 223 224
#endif

#define USE_ANAKIN_CONVERTER_BASE(op_type__, place_type__, precision_type__)   \
  extern int Touch_anakin_##op_type__##_##place_type__##_##precision_type__(); \
  int use_converter_anakin_##op_type__##_##place_type__##_##precision_type__   \
      __attribute__((unused)) =                                                \
          Touch_anakin_##op_type__##_##place_type__##_##precision_type__();

225 226 227 228 229 230 231 232
#if defined(PADDLE_WITH_CUDA) && defined(ANAKIN_X86_PLACE)
#define USE_ANAKIN_CONVERTER(op_type__)            \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, FP32) \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CPU, FP32)
#define USE_INT8_ANAKIN_CONVERTER(op_type__)       \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, INT8) \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CPU, INT8)
#elif defined(PADDLE_WITH_CUDA)
233 234 235 236
#define USE_ANAKIN_CONVERTER(op_type__) \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, FP32)
#define USE_INT8_ANAKIN_CONVERTER(op_type__) \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, INT8)
237
#endif