// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include "framework/core/types.h" #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/inference/anakin/engine.h" #include "paddle/fluid/inference/utils/singleton.h" #include "saber/saber_types.h" namespace paddle { namespace inference { namespace anakin { template class AnakinOpConverter { using AnakinEngineT = AnakinEngine; public: AnakinOpConverter() = default; virtual void operator()(const framework::proto::OpDesc &op, const framework::BlockDesc &block_desc, const framework::Scope &scope, bool test_mode) {} void ConvertOp(const framework::proto::OpDesc &op, const framework::BlockDesc &block_desc, const std::unordered_set ¶meters, const framework::Scope &scope, AnakinEngineT *engine, bool test_mode = false) { framework::OpDesc op_desc(op, nullptr); std::string op_type = op_desc.Type(); AnakinOpConverter *it = nullptr; if (op_type == "depthwise_conv2d") op_type = "conv2d"; if (op_type == "reshape2") op_type = "reshape"; if (op_type == "transpose2") op_type = "transpose"; if (op_type == "flatten2") op_type = "flatten"; if (!it) { it = Registry::Global().Lookup(op_type); } PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]", op_type); it->SetEngine(engine); (*it)(op, block_desc, scope, test_mode); } void ConvertBlock(framework::BlockDesc *block_desc, const std::unordered_set ¶meters, const framework::Scope &scope, AnakinEngineT *engine) { std::unique_lock lock(mutex_); framework::proto::BlockDesc *block = block_desc->Proto(); for (auto i = 0; i < block->ops_size(); i++) { auto &op = block->ops(i); ConvertOp(op, *block_desc, parameters, scope, engine); } } // The scope here should be inited with the parameter vars. void ConvertBlockToAnakinEngine( framework::BlockDesc *block_desc, framework::Scope *scope, const std::vector &inputs, const std::unordered_set ¶meters, const std::vector &outputs, AnakinEngineT *engine) { ConvertBlock(block_desc, parameters, *scope, engine); // if the max_batch size int max_batch_size = engine->GetMaxBatchSize(); PADDLE_ENFORCE(max_batch_size > 0, "the max_batch_size setted from config->EnableAnakinEngine " "must largger than 0"); // If the user does not specify this variable, we use the input shape from // the block_desc. auto max_input_shape = engine->GetMaxInputShape(); std::map> temp_max_input_shape; // Register outputs with anakin using the RegistVar interface before Freeze. // Note that RegistVar's parameters can only be outputs, not inputs. for (auto &output : outputs) { engine->Graph()->RegistVar(output); } engine->Freeze(); // Add scale for tensor in int8 mode. auto tensor_scales = engine->GetTensorScales(); for (auto &item : tensor_scales) { engine->Graph()->SetVarScale(item.first, item.second); } for (auto &input : inputs) { if (parameters.count(input)) continue; std::vector input_shape; input_shape.resize(4); input_shape[0] = max_batch_size; if (max_input_shape.count(input)) { PADDLE_ENFORCE(max_input_shape[input].size() == 4, "the dimensions of max_input_shape setted from " "config->EnableAnakinEngine must be 4"); for (int i = 1; i < 4; i++) { input_shape[i] = max_input_shape[input][i]; } } else { auto *var = block_desc->FindVar(input); PADDLE_ENFORCE(var, "no variable called %s", input); auto var_shape = var->GetShape(); std::cout << "input :" << input << std::endl; PADDLE_ENFORCE(var_shape.size() == 4); for (size_t i = 1; i < var_shape.size(); i++) { input_shape[i] = var_shape[i]; } } temp_max_input_shape[input] = input_shape; engine->SetInputShape(input, input_shape); } engine->SetMaxInputShape(temp_max_input_shape); engine->Optimize(); engine->InitNet(); } void SetEngine(AnakinEngineT *engine) { engine_ = engine; } virtual ~AnakinOpConverter() {} protected: bool test_mode_; AnakinEngineT *engine_{nullptr}; private: std::unordered_map *> converters_; framework::Scope *scope_{nullptr}; std::mutex mutex_; }; template class AnakinOpConverter<::anakin::saber::NV, ::anakin::Precision::FP32>; template class AnakinOpConverter<::anakin::saber::NV, ::anakin::Precision::INT8>; #ifdef ANAKIN_X86_PLACE template class AnakinOpConverter<::anakin::saber::X86, ::anakin::Precision::FP32>; template class AnakinOpConverter<::anakin::saber::X86, ::anakin::Precision::INT8>; #endif } // namespace anakin } // namespace inference } // namespace paddle #define REGISTER_ANAKIN_OP_CONVERTER_BASE(op_type__, Converter__, \ place_type__, place_class__, \ precision_type__, precision_class__) \ struct anakin_##op_type__##_##place_type__##_##precision_type__##_converter \ : public ::paddle::framework::Registrar { \ anakin_##op_type__##_##place_type__##_##precision_type__##_converter() { \ LOG(INFO) << "register convert " << #op_type__ << " "; \ ::paddle::inference::Registry< \ ::paddle::inference::anakin::AnakinOpConverter< \ place_class__, precision_class__>>::Global() \ .Register(#op_type__); \ } \ }; \ anakin_##op_type__##_##place_type__##_##precision_type__##_converter \ anakin_##op_type__##_##place_type__##_##precision_type__##_converter__; \ int Touch_anakin_##op_type__##_##place_type__##_##precision_type__() { \ anakin_##op_type__##_##place_type__##_##precision_type__##_converter__ \ .Touch(); \ return 0; \ } #define WRAP(...) __VA_ARGS__ #define REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, \ precision_type__) \ REGISTER_ANAKIN_OP_CONVERTER_BASE( \ op_type__, \ ::paddle::inference::anakin::Converter__, \ CUDA, ::anakin::saber::NV, precision_type__, \ ::anakin::Precision::precision_type__) #define REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__, \ precision_type__) \ REGISTER_ANAKIN_OP_CONVERTER_BASE( \ op_type__, \ ::paddle::inference::anakin::Converter__, \ CPU, ::anakin::saber::X86, precision_type__, \ ::anakin::Precision::precision_type__) #if defined(PADDLE_WITH_CUDA) && defined(ANAKIN_X86_PLACE) #define REGISTER_ANAKIN_OP_CONVERTER(op_type__, Converter__) \ REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32); \ REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8); \ REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32); \ REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8) #elif defined(PADDLE_WITH_CUDA) #define REGISTER_ANAKIN_OP_CONVERTER(op_type__, Converter__) \ REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32); \ REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8) #endif #define USE_ANAKIN_CONVERTER_BASE(op_type__, place_type__, precision_type__) \ extern int Touch_anakin_##op_type__##_##place_type__##_##precision_type__(); \ int use_converter_anakin_##op_type__##_##place_type__##_##precision_type__ \ __attribute__((unused)) = \ Touch_anakin_##op_type__##_##place_type__##_##precision_type__(); #if defined(PADDLE_WITH_CUDA) && defined(ANAKIN_X86_PLACE) #define USE_ANAKIN_CONVERTER(op_type__) \ USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, FP32) \ USE_ANAKIN_CONVERTER_BASE(op_type__, CPU, FP32) #define USE_INT8_ANAKIN_CONVERTER(op_type__) \ USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, INT8) \ USE_ANAKIN_CONVERTER_BASE(op_type__, CPU, INT8) #elif defined(PADDLE_WITH_CUDA) #define USE_ANAKIN_CONVERTER(op_type__) \ USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, FP32) #define USE_INT8_ANAKIN_CONVERTER(op_type__) \ USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, INT8) #endif