test_prod_op.py 5.5 KB
Newer Older
G
guofei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import unittest
import numpy as np


class TestProdOp(unittest.TestCase):
    def setUp(self):
        self.input = np.random.random(size=(10, 10, 5)).astype(np.float32)

    def run_imperative(self):
        input = paddle.to_tensor(self.input)
        dy_result = paddle.prod(input)
        expected_result = np.prod(self.input)
        self.assertTrue(np.allclose(dy_result.numpy(), expected_result))

        dy_result = paddle.prod(input, axis=1)
        expected_result = np.prod(self.input, axis=1)
        self.assertTrue(np.allclose(dy_result.numpy(), expected_result))

        dy_result = paddle.prod(input, axis=-1)
        expected_result = np.prod(self.input, axis=-1)
        self.assertTrue(np.allclose(dy_result.numpy(), expected_result))

        dy_result = paddle.prod(input, axis=[0, 1])
        expected_result = np.prod(self.input, axis=(0, 1))
        self.assertTrue(np.allclose(dy_result.numpy(), expected_result))

        dy_result = paddle.prod(input, axis=1, keepdim=True)
        expected_result = np.prod(self.input, axis=1, keepdims=True)
        self.assertTrue(np.allclose(dy_result.numpy(), expected_result))

        dy_result = paddle.prod(input, axis=1, dtype='int64')
        expected_result = np.prod(self.input, axis=1, dtype=np.int64)
        self.assertTrue(np.allclose(dy_result.numpy(), expected_result))

        dy_result = paddle.prod(input, axis=1, keepdim=True, dtype='int64')
        expected_result = np.prod(
            self.input, axis=1, keepdims=True, dtype=np.int64)
        self.assertTrue(np.allclose(dy_result.numpy(), expected_result))

    def run_static(self, use_gpu=False):
        input = paddle.data(name='input', shape=[10, 10, 5], dtype='float32')
        result0 = paddle.prod(input)
        result1 = paddle.prod(input, axis=1)
        result2 = paddle.prod(input, axis=-1)
        result3 = paddle.prod(input, axis=[0, 1])
        result4 = paddle.prod(input, axis=1, keepdim=True)
        result5 = paddle.prod(input, axis=1, dtype='int64')
        result6 = paddle.prod(input, axis=1, keepdim=True, dtype='int64')

        place = paddle.CUDAPlace(0) if use_gpu else paddle.CPUPlace()
        exe = paddle.static.Executor(place)
        exe.run(paddle.static.default_startup_program())
        static_result = exe.run(feed={"input": self.input},
                                fetch_list=[
                                    result0, result1, result2, result3, result4,
                                    result5, result6
                                ])

        expected_result = np.prod(self.input)
        self.assertTrue(np.allclose(static_result[0], expected_result))
        expected_result = np.prod(self.input, axis=1)
        self.assertTrue(np.allclose(static_result[1], expected_result))
        expected_result = np.prod(self.input, axis=-1)
        self.assertTrue(np.allclose(static_result[2], expected_result))
        expected_result = np.prod(self.input, axis=(0, 1))
        self.assertTrue(np.allclose(static_result[3], expected_result))
        expected_result = np.prod(self.input, axis=1, keepdims=True)
        self.assertTrue(np.allclose(static_result[4], expected_result))
        expected_result = np.prod(self.input, axis=1, dtype=np.int64)
        self.assertTrue(np.allclose(static_result[5], expected_result))
        expected_result = np.prod(
            self.input, axis=1, keepdims=True, dtype=np.int64)
        self.assertTrue(np.allclose(static_result[6], expected_result))

    def test_cpu(self):
        paddle.disable_static(place=paddle.CPUPlace())
        self.run_imperative()
        paddle.enable_static()

        with paddle.static.program_guard(paddle.static.Program()):
            self.run_static()

    def test_gpu(self):
        if not paddle.fluid.core.is_compiled_with_cuda():
            return

        paddle.disable_static(place=paddle.CUDAPlace(0))
        self.run_imperative()
        paddle.enable_static()

        with paddle.static.program_guard(paddle.static.Program()):
            self.run_static(use_gpu=True)


class TestProdOpError(unittest.TestCase):
    def test_error(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            x = paddle.data(name='x', shape=[2, 2, 4], dtype='float32')
            bool_x = paddle.data(name='bool_x', shape=[2, 2, 4], dtype='bool')
            # The argument x shoule be a Tensor
            self.assertRaises(TypeError, paddle.prod, [1])

            # The data type of x should be float32, float64, int32, int64
            self.assertRaises(TypeError, paddle.prod, bool_x)

            # The argument axis's type shoule be int ,list or tuple
            self.assertRaises(TypeError, paddle.prod, x, 1.5)

            # The argument dtype of prod_op should be float32, float64, int32 or int64.
            self.assertRaises(TypeError, paddle.prod, x, 'bool')


if __name__ == "__main__":
    unittest.main()