scale_op.cc 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/scale_op.h"
16
#include <string>
17
#include "paddle/fluid/platform/float16.h"
Y
Yu Yang 已提交
18

W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle

Y
Yu Yang 已提交
32 33 34 35 36
namespace paddle {
namespace operators {

class ScaleOp : public framework::OperatorWithKernel {
 public:
37 38 39
  ScaleOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
Y
Yu Yang 已提交
40 41
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

42
  void InferShape(framework::InferShapeContext *ctx) const override {
43 44
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "scale");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "scale");
45 46 47 48 49

    if (ctx->IsRuntime() && ctx->HasInput("ScaleTensor")) {
      auto scale = ctx->Inputs("ScaleTensor");
      PADDLE_ENFORCE_EQ(scale.size(), 1,
                        platform::errors::InvalidArgument(
50 51 52
                            "Input(ScaleTensor) size must be 1, "
                            "but received size is %d.",
                            scale.size()));
53 54
    }

Q
Qiao Longfei 已提交
55 56
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ "Out");
Y
Yu Yang 已提交
57
  }
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
73 74 75 76 77 78 79 80 81 82 83

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    if (ctx.HasInput("ScaleTensor")) {
      return framework::KernelSignature("scale.host", {"X", "ScaleTensor"},
                                        {"bias", "bias_after_scale"}, {"Out"});
    } else {
      return framework::KernelSignature(
          "scale", {"X"}, {"scale", "bias", "bias_after_scale"}, {"Out"});
    }
  }
Y
Yu Yang 已提交
84 85 86 87
};

class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
88
  void Make() override {
89
    AddInput("X", "(Tensor) Input tensor of scale operator.");
90 91 92 93 94
    AddInput("ScaleTensor",
             "(Tensor) If provided, use this as "
             "scale factor, this has a higher priority than "
             "attr(scale), the shape of this tensor MUST BE 1.")
        .AsDispensable();
95 96
    AddOutput("Out", "(Tensor) Output tensor of scale operator.");
    AddComment(R"DOC(
Y
yi.wu 已提交
97 98
**Scale operator**

S
sneaxiy 已提交
99
Apply scaling and bias addition to the input tensor.
Y
Yu Yang 已提交
100

S
sneaxiy 已提交
101 102 103 104 105 106 107
if bias_after_scale=True:

$$Out = scale*X + bias$$

else:

$$Out = scale*(X + bias)$$
Y
Yu Yang 已提交
108
)DOC");
Y
yi.wu 已提交
109
    AddAttr<float>("scale", "The scaling factor of the scale operator.")
C
caoying03 已提交
110
        .SetDefault(1.0);
S
sneaxiy 已提交
111
    AddAttr<float>("bias", "The bias of the scale operator.").SetDefault(0.0);
S
sneaxiy 已提交
112 113 114 115 116
    AddAttr<bool>(
        "bias_after_scale",
        "Apply bias addition after or before scaling. It is useful for "
        "numeric stability in some circumstances.")
        .SetDefault(true);
117 118 119
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
Y
Yu Yang 已提交
120 121 122
  }
};

123 124
class ScaleOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
125
  void operator()(framework::InferVarTypeContext *ctx) const override {
126
    ctx->SyncTypeAndDataType("X", "Out");
127 128 129
  }
};

H
hong 已提交
130 131
template <typename T>
class ScaleGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
132
 public:
H
hong 已提交
133
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
134

135
  void Apply(GradOpPtr<T> grad_op) const override {
Y
Yu Yang 已提交
136
    grad_op->SetType("scale");
H
hong 已提交
137
    grad_op->SetInput("X", this->OutputGrad("Out"));
138 139 140
    if (this->HasInput("ScaleTensor") > 0) {
      grad_op->SetInput("ScaleTensor", this->Input("ScaleTensor"));
    }
H
hong 已提交
141 142
    grad_op->SetOutput("Out", this->InputGrad("X"));
    grad_op->SetAttr("scale", this->GetAttr("scale"));
S
sneaxiy 已提交
143
    grad_op->SetAttr("bias", 0.0f);
S
sneaxiy 已提交
144
    grad_op->SetAttr("bias_after_scale", true);
145 146
    if (grad_op->HasAttr("use_mkldnn"))
      grad_op->SetAttr("use_mkldnn", this->GetAttr("use_mkldnn"));
Y
Yu Yang 已提交
147 148 149
  }
};

150
DECLARE_INPLACE_OP_INFERER(ScaleOpInplaceInferer, {"X", "Out"});
Y
Yu Yang 已提交
151 152 153 154 155
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
156 157 158
REGISTER_OPERATOR(scale, ops::ScaleOp, ops::ScaleOpMaker,
                  ops::ScaleGradMaker<paddle::framework::OpDesc>,
                  ops::ScaleGradMaker<paddle::imperative::OpBase>,
159
                  ops::ScaleOpVarTypeInference, ops::ScaleOpInplaceInferer);
Q
QI JUN 已提交
160 161 162
REGISTER_OP_CPU_KERNEL(
    scale, ops::ScaleKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, double>,
163 164
    ops::ScaleKernel<paddle::platform::CPUDeviceContext,
                     paddle::platform::bfloat16>,
165 166 167
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, uint8_t>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int16_t>,
Q
QI JUN 已提交
168 169
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int64_t>);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

REGISTER_OP_CUDA_KERNEL(
    scale,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, float>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, double>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext,
                                   uint8_t>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, int8_t>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext,
                                   int16_t>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, int>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext,
                                   int64_t>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext,
                                   paddle::platform::float16>);