scale_op.cc 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/scale_op.h"
16

M
minqiyang 已提交
17
#include <memory>
18
#include <string>
Y
Yu Yang 已提交
19 20 21 22 23 24

namespace paddle {
namespace operators {

class ScaleOp : public framework::OperatorWithKernel {
 public:
25 26 27
  ScaleOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
Y
Yu Yang 已提交
28 29
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

30
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
31 32 33 34
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ScaleOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ScaleOp should not be null.");
35 36 37 38 39 40 41 42

    if (ctx->IsRuntime() && ctx->HasInput("ScaleTensor")) {
      auto scale = ctx->Inputs("ScaleTensor");
      PADDLE_ENFORCE_EQ(scale.size(), 1,
                        platform::errors::InvalidArgument(
                            "Input(ScaleTensor) size must be 1"));
    }

Q
Qiao Longfei 已提交
43 44
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ "Out");
Y
Yu Yang 已提交
45 46 47 48 49
  }
};

class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
50
  void Make() override {
51
    AddInput("X", "(Tensor) Input tensor of scale operator.");
52 53 54 55 56
    AddInput("ScaleTensor",
             "(Tensor) If provided, use this as "
             "scale factor, this has a higher priority than "
             "attr(scale), the shape of this tensor MUST BE 1.")
        .AsDispensable();
57 58
    AddOutput("Out", "(Tensor) Output tensor of scale operator.");
    AddComment(R"DOC(
Y
yi.wu 已提交
59 60
**Scale operator**

S
sneaxiy 已提交
61
Apply scaling and bias addition to the input tensor.
Y
Yu Yang 已提交
62

S
sneaxiy 已提交
63 64 65 66 67 68 69
if bias_after_scale=True:

$$Out = scale*X + bias$$

else:

$$Out = scale*(X + bias)$$
Y
Yu Yang 已提交
70
)DOC");
Y
yi.wu 已提交
71
    AddAttr<float>("scale", "The scaling factor of the scale operator.")
C
caoying03 已提交
72
        .SetDefault(1.0);
S
sneaxiy 已提交
73
    AddAttr<float>("bias", "The bias of the scale operator.").SetDefault(0.0);
S
sneaxiy 已提交
74 75 76 77 78
    AddAttr<bool>(
        "bias_after_scale",
        "Apply bias addition after or before scaling. It is useful for "
        "numeric stability in some circumstances.")
        .SetDefault(true);
Y
Yu Yang 已提交
79 80 81
  }
};

82 83
class ScaleOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
84 85 86
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto &in_var_name = ctx->Input("X").front();
    auto out_var_name = ctx->Output("Out").front();
87

88
    if (in_var_name != out_var_name) {
M
minqiyang 已提交
89 90
      ctx->SetType(out_var_name, ctx->GetType(in_var_name));
      ctx->SetDataType(out_var_name, ctx->GetDataType(in_var_name));
91
    }
92 93 94
  }
};

H
hong 已提交
95 96
template <typename T>
class ScaleGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
97
 public:
H
hong 已提交
98
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
99

100
  void Apply(GradOpPtr<T> grad_op) const override {
Y
Yu Yang 已提交
101
    grad_op->SetType("scale");
H
hong 已提交
102
    grad_op->SetInput("X", this->OutputGrad("Out"));
103 104 105
    if (this->HasInput("ScaleTensor") > 0) {
      grad_op->SetInput("ScaleTensor", this->Input("ScaleTensor"));
    }
H
hong 已提交
106 107
    grad_op->SetOutput("Out", this->InputGrad("X"));
    grad_op->SetAttr("scale", this->GetAttr("scale"));
S
sneaxiy 已提交
108
    grad_op->SetAttr("bias", 0.0f);
S
sneaxiy 已提交
109
    grad_op->SetAttr("bias_after_scale", true);
Y
Yu Yang 已提交
110 111 112
  }
};

113
DECLARE_INPLACE_OP_INFERER(ScaleOpInplace, {"X", "Out"});
Y
Yu Yang 已提交
114 115 116 117 118
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
119 120 121
REGISTER_OPERATOR(scale, ops::ScaleOp, ops::ScaleOpMaker,
                  ops::ScaleGradMaker<paddle::framework::OpDesc>,
                  ops::ScaleGradMaker<paddle::imperative::OpBase>,
D
dzhwinter 已提交
122
                  ops::ScaleOpVarTypeInference, ops::ScaleOpInplace);
Q
QI JUN 已提交
123 124 125
REGISTER_OP_CPU_KERNEL(
    scale, ops::ScaleKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, double>,
126 127 128
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, uint8_t>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int16_t>,
Q
QI JUN 已提交
129 130
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int64_t>);