nccl_context.cc 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/nccl_context.h"
16

17 18 19 20 21
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/all_reduce.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#endif
22

23 24
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
25 26 27 28 29 30

namespace paddle {
namespace framework {
class Variable;
}  // namespace framework
}  // namespace paddle
31

32 33 34
namespace paddle {
namespace imperative {
#if defined(PADDLE_WITH_NCCL)
35

36 37 38
void NCCLParallelContext::BcastNCCLId(
    std::vector<ncclUniqueId> &nccl_ids,  // NOLINT
    int root) {
39
  if (strategy_.local_rank_ == root) {
40 41 42 43 44
    std::vector<std::string> other_trainers;
    for (auto &ep : strategy_.trainer_endpoints_) {
      if (ep != strategy_.current_endpoint_) {
        other_trainers.push_back(ep);
      }
45
    }
46
    platform::SendBroadCastCommID(other_trainers, &nccl_ids);
47
  } else {
48
    platform::RecvBroadCastCommID(strategy_.current_endpoint_, &nccl_ids);
49 50 51 52
  }
}

void NCCLParallelContext::Init() {
53 54
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(strategy_.nrings_);
55

56 57 58 59
  if (strategy_.local_rank_ == 0) {
    // generate the unique ncclid on the root worker
    for (size_t i = 0; i < nccl_ids.size(); ++i) {
      platform::dynload::ncclGetUniqueId(&nccl_ids[i]);
60
    }
61
  }
62
  BcastNCCLId(nccl_ids, 0);
63 64 65

  int gpu_id = BOOST_GET_CONST(platform::CUDAPlace, place_).device;
  for (int ring_id = 0; ring_id < strategy_.nrings_; ring_id++) {
66 67 68 69 70
    VLOG(0) << "init nccl context nranks: " << strategy_.nranks_
            << " local rank: " << strategy_.local_rank_ << " gpu id: " << gpu_id
            << " ring id: " << ring_id;
    // it will assign nccl_comm in CUDADeviceContext within ring_id
    platform::NCCLCommContext::Instance().CreateNCCLComm(
71 72
        &nccl_ids[ring_id], strategy_.nranks_, strategy_.local_rank_, gpu_id,
        ring_id);
73 74 75 76 77 78

    compute_events_.emplace_back(
        platform::CudaEventResourcePool::Instance().New(
            BOOST_GET_CONST(platform::CUDAPlace, place_).device));
    comm_events_.emplace_back(platform::CudaEventResourcePool::Instance().New(
        BOOST_GET_CONST(platform::CUDAPlace, place_).device));
79 80 81 82 83 84 85 86 87 88
  }
}

void NCCLParallelContext::AllReduceByStream(const framework::Variable &src,
                                            framework::Variable *dst,
                                            int ring_id, bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      platform::is_gpu_place(place_), true,
      platform::errors::Unimplemented(
          "Dynamic graph mode does not support multi-CPU training yet."));
89
  AllReduce(src, dst, strategy_, ring_id, use_calc_stream);
90
}
91

92
paddle::platform::DeviceContext *NCCLParallelContext::GetDeviceContext(
93
    int ring_id) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  return static_cast<platform::DeviceContext *>(
      platform::NCCLCommContext::Instance()
          .Get(ring_id, place_)
          ->dev_context());
}

void NCCLParallelContext::WaitCompute(int ring_id) {
  PADDLE_ENFORCE_GE(ring_id, 0, platform::errors::OutOfRange(
                                    "ring id must >= 0, but got %d", ring_id));
  PADDLE_ENFORCE_LT(ring_id, compute_events_.size(),
                    platform::errors::OutOfRange(
                        "ring id must < compute events size,"
                        "but got ring id = %d, compute events size = %d",
                        ring_id, compute_events_.size()));

  auto compute_stream = static_cast<platform::CUDADeviceContext *>(
                            platform::DeviceContextPool::Instance().Get(place_))
                            ->stream();
  auto comm_stream =
      platform::NCCLCommContext::Instance().Get(ring_id, place_)->stream();
  auto event = compute_events_[ring_id].get();

  // compute_stream-->event-->comm_stream
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(event, compute_stream));
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamWaitEvent(comm_stream, event, 0));
}

void NCCLParallelContext::WaitComm(int ring_id) {
  PADDLE_ENFORCE_GE(ring_id, 0, platform::errors::OutOfRange(
                                    "ring id must >= 0, but got %d", ring_id));
  PADDLE_ENFORCE_LT(ring_id, comm_events_.size(),
                    platform::errors::OutOfRange(
                        "ring id must < comm events size,"
                        "but got ring id = %d, comm events size = %d",
                        ring_id, comm_events_.size()));

  auto compute_stream = static_cast<platform::CUDADeviceContext *>(
                            platform::DeviceContextPool::Instance().Get(place_))
                            ->stream();
  auto comm_stream =
      platform::NCCLCommContext::Instance().Get(ring_id, place_)->stream();
  auto event = comm_events_[ring_id].get();

  // comm_stream-->event-->compute_stream
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(event, comm_stream));
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamWaitEvent(compute_stream, event, 0));
140
}
141

142 143 144 145
#endif

}  //  namespace imperative
}  //  namespace paddle