variable_index.py 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
from . import unique_name
from . import core
W
WeiXin 已提交
19
import paddle
20 21 22 23

MAX_INTEGER = 2**31 - 1


W
WeiXin 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def is_list_tuple(index, contain_type):
    def _is_list_tuple(item):
        if not (isinstance(item, (list, tuple)) or type(item) == contain_type):
            return False
        if isinstance(item, (tuple, list)):
            for s in item:
                if not _is_list_tuple(s):
                    return False
        return True

    if not isinstance(index, (tuple, list)):
        return False
    for s in index:
        if not _is_list_tuple(s):
            return False
    return True


def is_one_dim_list(index, contain_type):
    if isinstance(index, list):
        for i in index:
            if not isinstance(i, contain_type):
                return False
    else:
        return False
    return True


def get_list_index_shape(var_dims, index_dims):
    var_dims_size = len(var_dims)
    index_dims_size = len(index_dims)

    out_dims_size = var_dims_size - index_dims[0] + index_dims_size - 1

    out_dims_shape = [1] * out_dims_size

60
    out_dims_shape[: index_dims_size - 1] = index_dims[1:]
W
WeiXin 已提交
61

62
    out_dims_shape[index_dims_size - 1 :] = var_dims[index_dims[0] :]
W
WeiXin 已提交
63 64 65 66 67 68 69
    return out_dims_shape


class SliceInfo:
    def __init__(self):
        self.pre_shape = None
        self.indexes = []
W
WeiXin 已提交
70
        self.dtype = None
W
WeiXin 已提交
71 72

    def update(self, index):
73
        if is_list_tuple(index, int) or isinstance(
74 75
            index, (paddle.fluid.Variable, np.ndarray)
        ):
W
WeiXin 已提交
76 77 78 79
            # convert index to Tensor
            if not isinstance(index, paddle.fluid.Variable):
                index = paddle.assign(index)

W
WeiXin 已提交
80 81 82 83 84
            if self.dtype is None:
                self.dtype = index.dtype
            else:
                if index.dtype != self.dtype:
                    raise IndexError(
85 86 87 88
                        "Data type of Tensor/List index should be same. The current data type is {}, but the previous data type is {}.".format(
                            index.dtype, self.dtype
                        )
                    )
W
WeiXin 已提交
89

W
WeiXin 已提交
90 91 92 93 94 95
            self.indexes.append(index)

            if self.pre_shape is None:
                self.pre_shape = index.shape
            else:
                if self.pre_shape != index.shape:
96
                    # broadcast
97 98 99
                    cur_shape = paddle.broadcast_shape(
                        self.pre_shape, index.shape
                    )
W
WeiXin 已提交
100
                    for i in range(len(self.indexes)):
101
                        self.indexes[i] = paddle.broadcast_to(
102 103
                            self.indexes[i], cur_shape
                        )
W
WeiXin 已提交
104 105 106
                self.pre_shape = self.indexes[-1].shape
        else:
            raise ValueError(
107 108 109 110
                "Index should be list/tuple of int or Tensor, but received {}.".format(
                    index
                )
            )
W
WeiXin 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    def shape_stride(self, shape):
        s = [1] * len(shape)
        for i in range(len(shape) - 2, -1, -1):
            s[i] = shape[i + 1] * s[i + 1]

        return s

    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def get_offset_stride(self, tensor_shape):
        for index in self.indexes:
            if not isinstance(index, paddle.fluid.Variable):
                raise ValueError(
                    "only support list/tensor index, but received {}.".format(
127 128 129
                        type(index)
                    )
                )
W
WeiXin 已提交
130 131 132

        if len(self.indexes) <= len(tensor_shape) or len(self.indexes) == 1:
            shape = paddle.stack(self.indexes)
133 134 135
            axes = list(range(1, len(self.pre_shape) + 1)) + [
                0,
            ]
W
WeiXin 已提交
136 137 138

        else:
            raise ValueError(
139 140 141 142
                "too many indices for tensor: tensor is {}-dimensional, but {} were indexed".format(
                    len(tensor_shape), self.pre_shape[0]
                )
            )
W
WeiXin 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

        shape_transpose = paddle.transpose(shape, axes)
        return shape_transpose

    def get_item(self, tensor):
        shape_transpose = self.get_offset_stride(tensor.shape)
        index = paddle.assign(shape_transpose)
        return paddle.gather_nd(tensor, index)

    def set_item(self, tensor_origin, value):

        if not isinstance(value, paddle.fluid.Variable):
            value = paddle.assign(value)
        tensor_type = None

        if tensor_origin.dtype in [
159 160
            core.VarDesc.VarType.FP32,
            core.VarDesc.VarType.FP64,
W
WeiXin 已提交
161 162 163 164 165 166 167 168 169 170 171 172
        ]:
            tensor = tensor_origin
        else:
            tensor_type = tensor_origin.dtype
            tensor = tensor_origin.astype(core.VarDesc.VarType.FP32)

        if value.dtype != tensor.dtype:
            value = value.astype(tensor.dtype)

        shape_transpose = self.get_offset_stride(tensor_origin.shape)
        index = paddle.assign(shape_transpose)

173 174 175 176 177 178 179
        gather_tensor_shape = get_list_index_shape(
            tensor.shape,
            [
                len(self.indexes),
            ]
            + list(self.indexes[-1].shape),
        )
W
WeiXin 已提交
180

181 182 183
        value_dims_bd = [
            1,
        ] * len(gather_tensor_shape)
184
        value_dims_bd[-len(value.shape) :] = list(value.shape)
W
WeiXin 已提交
185 186

        for i in range(len(gather_tensor_shape)):
187 188 189 190 191 192 193 194 195
            if not (
                value_dims_bd[i] == gather_tensor_shape[i]
                or value_dims_bd[i] == 1
            ):
                raise ValueError(
                    "{} can not broadcast into {}".format(
                        value.shape, gather_tensor_shape
                    )
                )
W
WeiXin 已提交
196 197 198

        value_broadcast = paddle.broadcast_to(value, gather_tensor_shape)

199
        value_1d = value_broadcast.reshape(
200 201
            [-1] + gather_tensor_shape[len(index.shape) - 1 :]
        )
W
WeiXin 已提交
202 203 204 205

        index_1d = index.reshape([-1, index.shape[-1]])

        tensor_stride = paddle.assign(
206 207
            self.shape_stride(tensor.shape[: index.shape[-1]])
        )
W
WeiXin 已提交
208 209 210 211 212
        inds = []
        for i in range(index_1d.shape[0]):
            temp = (index_1d[i] * tensor_stride).sum()
            inds.append(temp)
        index_1d = paddle.stack(inds).reshape([-1])
213
        t_reshape = tensor.reshape([-1] + list(tensor.shape[index.shape[-1] :]))
W
WeiXin 已提交
214 215 216 217 218 219 220 221
        out = paddle.scatter(t_reshape, index_1d, value_1d)
        if tensor_type is not None:
            out = out.astype(tensor_type)
        tensor_origin[:] = out.reshape(tensor_origin.shape)

        return tensor_origin


222 223
def replace_ellipsis(var, item):
    from .framework import Variable
224

225 226 227 228 229 230 231 232 233 234
    # Use slice(None) to replace Ellipsis.
    # For var, var.shape = [3,4,5,6]
    #
    #   var[..., 1:2] -> var[:, :, :, 1:2]
    #   var[0, ...] -> var[0]
    #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

    item = list(item)

    # Remove Variable to skip bug when counting Ellipsis
W
WeiXin 已提交
235
    item_remove_var = [
236 237
        ele
        for ele in item
238
        if not isinstance(ele, (Variable, np.ndarray)) and ele is not None
W
WeiXin 已提交
239
    ]
240 241 242 243 244 245 246 247 248 249 250
    ell_count = item_remove_var.count(Ellipsis)
    if ell_count == 0:
        return item
    elif ell_count > 1:
        raise IndexError("An index can only have a single ellipsis ('...')")

    ell_idx = item.index(Ellipsis)

    if ell_idx == len(item) - 1:
        return item[:-1]
    else:
251 252 253
        item[ell_idx : ell_idx + 1] = [slice(None)] * (
            len(var.shape) - len(item) + item.count(None) + 1
        )
254 255 256 257

    return item


W
WeiXin 已提交
258 259 260 261 262 263 264 265 266 267
def replace_ndarray(item):
    new_item = []
    for slice_item in item:
        if isinstance(slice_item, np.ndarray):
            new_item.append(paddle.assign(slice_item))
        else:
            new_item.append(slice_item)
    return new_item


268 269 270 271 272 273 274 275 276 277 278
def replace_none(item):
    new_item = []
    none_axes = []
    for i, slice_item in enumerate(item):
        if slice_item is None:
            none_axes.append(i)
        else:
            new_item.append(slice_item)
    return new_item, none_axes


279 280
def is_integer_or_scalar_tensor(ele):
    from .framework import Variable
281

282 283 284 285 286 287 288 289
    if isinstance(ele, int):
        return True
    elif isinstance(ele, Variable):
        if len(ele.shape) == 1 and ele.shape[0] == 1:
            return True
    return False


290 291
def is_bool_tensor(ele):
    from .framework import Variable
292

293 294 295 296 297
    if isinstance(ele, Variable) and ele.dtype == paddle.bool:
        return True
    return False


298 299 300 301 302
def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
    from .framework import Variable
    from .layers import utils

    if utils._contain_var(attr):
303 304 305
        inputs[tensor_attr_name] = utils._convert_to_tensor_list(
            attr, dtype="int64"
        )
306 307 308 309 310 311 312 313 314 315
        for i, dim in enumerate(attr):
            if isinstance(dim, Variable):
                attrs[attr_name].append(-1)
                infer_flags[i] = -1
            else:
                attrs[attr_name].append(dim)
    else:
        attrs[attr_name] = attr


316
# the item is a tensor of bool
317 318
def get_value_for_bool_tensor(var, item):
    if len(item.shape) > len(var.shape):
319 320 321 322 323
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
324 325 326
    for i, dim_len in enumerate(item.shape):
        if dim_len != var.shape[i]:
            raise IndexError(
327 328 329 330 331
                "The dimension of bool index doesn't match indexed array along "
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
332 333 334 335

    def idx_not_empty(var, item):
        from ..tensor import gather_nd

336
        bool_2_idx = paddle.nonzero(item == True)
337 338 339 340 341 342 343 344
        return gather_nd(var, bool_2_idx)

    def idx_empty(var):
        var_shape = list(var.shape)
        var_shape[0] = 0
        return paddle.empty(var_shape, dtype=var.dtype)

    from .layers.control_flow import cond
345 346 347 348

    return cond(
        item.any(), lambda: idx_not_empty(var, item), lambda: idx_empty(var)
    )
349 350


351 352 353 354 355 356 357 358 359 360
def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """
361
    from .framework import default_main_program, Variable
362

W
WeiXin 已提交
363 364 365
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
366 367

    if not isinstance(item, tuple):
368
        item = (item,)
369 370 371 372 373 374

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []
375
    reverse_axes = []
376 377

    use_strided_slice = False
W
WeiXin 已提交
378
    item = replace_ndarray(item)
379
    item = replace_ellipsis(var, item)
380
    item, none_axes = replace_none(item)
W
WeiXin 已提交
381
    slice_info = SliceInfo()
382 383 384 385
    is_tensor_array = (
        hasattr(var, "desc")
        and var.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
    )
386 387

    for dim, slice_item in enumerate(item):
388 389 390 391 392 393 394 395
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
            if (
                isinstance(slice_item, int)
                and var.shape[dim] is not None
                and var.shape[dim] >= 0
                and slice_item >= var.shape[dim]
396
                and not is_tensor_array
397
            ):
398 399 400 401 402 403 404 405
                # For python, if users write a, b = var, the __getitem__
                # method will iterate through 0, 1, 2 ... until __getitem__
                # throws an IndexError, then stop. The var[0], var[1] will
                # be given to a, b respectively. If more values are given,
                # the unpack size would cause error.
                # We raises IndexError here to support grammar like `a, b = var`
                raise IndexError(
                    "slice_item %d at dim %d should be >= 0 and < var.shape[%d]: %d"
406 407
                    % (slice_item, dim, dim, var.shape[dim])
                )
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            step = 1 if step is None else step

423 424 425
            if start is None:
                start = 0 if step > 0 else MAX_INTEGER
            if end is None:
426
                if var.shape[dim] != -1 and (
427
                    paddle.fluid.framework._non_static_mode()
428
                    or not is_tensor_array
429
                ):
430 431 432
                    end = var.shape[dim] if step > 0 else -1
                else:
                    end = MAX_INTEGER if step > 0 else -1
433

434
        elif isinstance(slice_item, list):
Z
zyfncg 已提交
435
            all_bool = True
W
WeiXin 已提交
436 437 438 439 440

            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

441
            for i in slice_item:
Z
zyfncg 已提交
442 443 444
                if type(i) is int:
                    all_bool = False
                elif not isinstance(i, bool):
445 446
                    raise TypeError("Only support int or bool in index list.")

447 448
            if len(item) != 1:
                raise IndexError(
449 450 451 452
                    "When index contains a list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
453 454 455 456
            new_slice_item = []
            if all_bool:
                if len(slice_item) != var.shape[0]:
                    raise IndexError(
457 458 459 460 461
                        "The dimension of bool index doesn't match indexed array along "
                        "dimension 0, the target dimension is {}, but received {}.".format(
                            var.shape[0], len(slice_item)
                        )
                    )
462 463 464 465
                for idx, ele in enumerate(slice_item):
                    if ele is True:
                        new_slice_item.append(idx)
                slice_item = new_slice_item
Z
zyfncg 已提交
466 467 468 469 470 471 472 473 474
            else:
                for idx, ele in enumerate(slice_item):
                    if type(ele) is int:
                        new_slice_item.append(ele)
                    elif ele is True:
                        new_slice_item.append(1)
                    else:
                        new_slice_item.append(0)
                slice_item = new_slice_item
475

476 477 478
            from .layers import assign
            from ..tensor import index_select

479
            idx = assign(np.array(slice_item).astype("int32"))
480 481
            return index_select(var, index=idx, axis=0)

W
wanghuancoder 已提交
482
        elif isinstance(slice_item, (Variable, core.eager.Tensor)):
W
WeiXin 已提交
483
            if len(item) == 1:
484

485
                from ..tensor import index_select
Z
zyfncg 已提交
486

W
WeiXin 已提交
487
                if slice_item.dtype == paddle.bool:
488
                    return get_value_for_bool_tensor(var, slice_item)
W
WeiXin 已提交
489 490 491 492 493 494 495 496 497
                else:
                    if len(slice_item.shape) == 1:
                        return index_select(var, index=slice_item, axis=0)
                    else:
                        slice_info.update(slice_item)
                        continue
            else:
                slice_info.update(slice_item)
                continue
498

499 500
        else:
            raise IndexError(
501 502 503 504
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    slice_item
                )
            )
505 506 507 508 509 510 511

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice

W
WeiXin 已提交
512 513 514
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
515 516 517 518
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
519 520
        return slice_info.get_item(var)

521 522 523 524 525
    inputs = {'Input': [var]}
    attrs = {
        'axes': axes,
        'starts': [],
        'ends': [],
526
        'decrease_axis': decrease_axes,
527 528 529 530 531 532 533
    }
    if use_strided_slice:
        attrs['strides'] = []

    infer_flags = [1] * len(axes)
    deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
534 535 536
    deal_attrs(
        attrs, steps, "strides", "StridesTensorList", inputs, infer_flags
    )
537 538 539 540 541
    attrs['infer_flags'] = infer_flags

    out = var
    if len(axes) > 0:
        op_type = "strided_slice" if use_strided_slice else "slice"
542 543 544 545 546 547 548 549 550
        if paddle.fluid.framework.in_dygraph_mode() and op_type == "slice":
            if "StartsTensorList" in inputs.keys():
                st = inputs['StartsTensorList']
            else:
                st = attrs['starts']
            if "EndsTensorList" in inputs.keys():
                end = inputs['EndsTensorList']
            else:
                end = attrs['ends']
551 552 553
            out = paddle._C_ops.slice(
                var, axes, st, end, attrs['infer_flags'], attrs['decrease_axis']
            )
554 555 556 557
        else:
            target_block = default_main_program().current_block()

            slice_out_var = target_block.create_var(
558 559 560 561 562 563 564 565 566 567 568
                name=unique_name.generate_with_ignorable_key(
                    var.name + "_" + op_type
                ),
                dtype=var.dtype,
            )
            target_block.append_op(
                type=op_type,
                inputs=inputs,
                outputs={'Out': [slice_out_var]},
                attrs=attrs,
            )
569
            out = slice_out_var
570

571
    if len(reverse_axes) > 0:
572
        from .layers.tensor import reverse
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        out = reverse(out, axis=reverse_axes)

    # Deal with cases when all axes are decreased.
    # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
    # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
    # For example:
    # # x.shape: (2,3,4)
    # out = x[0, 1, 1, None] # out.shape : (1)
    if len(decrease_axes) == len(var.shape):
        none_axes = none_axes[1:]

    if len(none_axes) > 0:
        # Deal with cases that decrease_axes is not empty
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for idx, axis in enumerate(none_axes):
            l = len([i for i in decrease_axes if i < axis])
            new_axis = axis - l
            none_axes[idx] = new_axis

        # Deal with cases when all axes are decreased.
        # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
        # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 1, 1, None] # out.shape : (1)

        from ..tensor import unsqueeze
603

604
        out = unsqueeze(out, axis=none_axes)
605 606 607 608

    return out


609
def _setitem_for_tensor_array(var, item, value):
610 611 612 613 614 615 616
    """branches for tensor array setitem operation.
    A item can be a:
    (1) int/Variable, which is a simple number/variable such as [1], [-2]
    (2) Slice, which is represented by bounds such as [2:-1]
    (3) Tuple, which includes the above two cases such as [2:-1, 1]
    If item is case (1), we perform paddle.tensor.array_write,
    in other cases, we raise a NotImplementedError.
617 618 619
    """
    from ..framework import LayerHelper, core, _non_static_mode
    from .framework import Variable
620 621 622

    assert (
        not _non_static_mode()
623 624
    ), "setitem for tensor_array must be called in static graph mode."
    if isinstance(item, (Variable, int)):
625 626 627
        from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import (
            to_static_variable,
        )
628 629
        from paddle import cast
        from paddle.tensor import array_write
630

631 632 633 634 635
        item = paddle.cast(to_static_variable(item), dtype='int64')
        value = to_static_variable(value)
        array_write(x=value, i=item, array=var)
    else:
        raise NotImplementedError(
636 637 638 639
            "Only support __setitem__ by Int/Variable in tensor_array, but gets {}".format(
                type(item)
            )
        )
640 641


642 643
def _setitem_impl_(var, item, value):
    from .framework import default_main_program, Variable
644
    from paddle.fluid import core
645

646 647
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        return _setitem_for_tensor_array(var, item, value)
648 649

    inputs = {'Input': var}
W
WeiXin 已提交
650 651 652
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
653 654
    # 1. Parse item
    if not isinstance(item, tuple):
655
        item = (item,)
656 657 658 659 660 661 662

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

W
WeiXin 已提交
663
    item = replace_ndarray(item)
664
    item = replace_ellipsis(var, item)
665
    item, none_axes = replace_none(item)
W
WeiXin 已提交
666
    slice_info = SliceInfo()
Z
zyfncg 已提交
667 668
    dim = 0
    for _, slice_item in enumerate(item):
669 670 671
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
672 673 674 675 676 677 678 679 680 681 682
            decrease_axes.append(dim)
            start = slice_item
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
            step = 1

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
Z
zyfncg 已提交
683
                dim += 1
684 685 686 687 688 689 690
                continue

            step = 1 if step is None else step

            if not isinstance(step, Variable) and step == 0:
                raise ValueError(
                    "When assign a value to a paddle.Tensor, step can not be 0, "
691 692
                    "but received step is {}.".format(step)
                )
693 694 695 696 697 698 699 700 701 702 703 704

            if isinstance(step, Variable) and (start is None or end is None):
                raise ValueError(
                    "When assign a value to a paddle.Tensor, it's not supported that "
                    "the start or end is None when the type of step is paddle.Tensor."
                )

            if start is None:
                start = 0 if step > 0 else MAX_INTEGER

            if end is None:
                end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
Z
zyfncg 已提交
705 706 707 708 709 710 711
        elif isinstance(slice_item, list):
            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

            for i in slice_item:
                if not isinstance(i, bool):
712 713 714
                    raise TypeError(
                        "Doesn't support {} in index list.".format(type(i))
                    )
Z
zyfncg 已提交
715 716 717

            if len(item) != 1:
                raise IndexError(
718 719 720 721
                    "When index contains a bool list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
722 723

            from .layers import assign
724

Z
zyfncg 已提交
725 726 727 728 729 730 731
            idx_tensor = assign(slice_item)
            return set_value_for_bool_tensor(var, idx_tensor, value)

        elif isinstance(slice_item, Variable):
            if slice_item.dtype == core.VarDesc.VarType.BOOL:
                if len(item) != 1:
                    raise IndexError(
732 733 734 735
                        "When index contains a bool tensor, its length must be 1, but received {}.".format(
                            len(item)
                        )
                    )
Z
zyfncg 已提交
736 737 738 739
                return set_value_for_bool_tensor(var, slice_item, value)
            else:
                slice_info.update(slice_item)
                continue
740 741
        else:
            raise IndexError(
Z
zyfncg 已提交
742
                "Valid index accept int, slice, ellipsis, None, list of bool, Variable, "
743 744
                "but received {}.".format(slice_item)
            )
745 746 747 748 749 750

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)

Z
zyfncg 已提交
751
        dim += 1
W
WeiXin 已提交
752 753 754
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
755 756 757 758
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
759
        return slice_info.set_item(var, value)
760 761 762 763 764
    attrs = {
        'axes': axes,
        'starts': starts,
        'ends': ends,
        'steps': steps,
Z
zyfncg 已提交
765
        'decrease_axes': decrease_axes,
766
        'none_axes': none_axes,
767 768 769
    }

    from .layers import utils
770

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    if utils._contain_var(starts):
        inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
        del attrs['starts']
    if utils._contain_var(ends):
        inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
        del attrs['ends']
    if utils._contain_var(steps):
        inputs['StepsTensorList'] = utils._convert_to_tensor_list(steps)
        del attrs['steps']

    # 2. Parse value
    dtype = var.dtype
    attrs['dtype'] = dtype

    from .data_feeder import convert_dtype
786

787 788 789 790 791 792 793 794 795
    #  2.1 value is an integer of float
    if isinstance(value, (int, float)):
        value = np.array([value]).astype(convert_dtype(dtype))

    #  2.2 value is a np.ndarray
    if isinstance(value, np.ndarray):
        shape = list(value.shape)
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
796
            values = [int(v) for v in value.flat]
797 798 799 800 801 802 803 804 805 806 807 808
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.FP64:
            value_name = "fp64_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in value.flat]
809 810 811
        elif dtype == core.VarDesc.VarType.FP16:
            value_name = "fp16_values"
            values = [float(v) for v in value.flat]
812 813 814
        else:
            raise TypeError(
                "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
815
                "the data type of the paddle.Tensor must be bool, float32, int32, int64 or float16, but "
816 817
                "received %s." % convert_dtype(dtype)
            )
818 819 820
        attrs[value_name] = values
        attrs["shape"] = shape

W
wanghuancoder 已提交
821
    elif isinstance(value, (Variable, core.eager.Tensor)):
822 823 824 825 826
        inputs["ValueTensor"] = value
    else:
        raise TypeError(
            "Only support to assign an integer, float, numpy.ndarray or "
            "paddle.Tensor to a paddle.Tensor, but received {}".format(
827 828 829
                type(value)
            )
        )
830

831
    if paddle.fluid.framework._non_static_mode():
Z
zyfncg 已提交
832 833
        var._bump_inplace_version()

834
    cur_block = default_main_program().current_block()
835 836 837 838 839 840 841
    cur_block.append_op(
        type="set_value",
        inputs=inputs,
        outputs={'Out': var},
        attrs=attrs,
        inplace_map={"Input": "Out"},
    )
842 843

    return var
Z
zyfncg 已提交
844 845


846
# the item is a tensor of bool
Z
zyfncg 已提交
847 848
def set_value_for_bool_tensor(var, item, value):
    if len(item.shape) > len(var.shape):
849 850 851 852 853
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
Z
zyfncg 已提交
854 855 856 857
    for i, dim_len in enumerate(item.shape):
        if dim_len != var.shape[i]:
            raise IndexError(
                "The dimension of bool index doesn't match indexed array along "
858 859 860 861
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
Z
zyfncg 已提交
862 863 864 865 866 867 868 869 870

    def idx_not_empty(var, item, value):
        from .framework import Variable
        from .layers import assign
        from ..tensor import gather_nd, scatter_nd_add

        if not isinstance(value, Variable):
            value = assign(value).cast(var.dtype)

871
        idx = paddle.nonzero(item)
Z
zyfncg 已提交
872 873 874 875 876 877
        gather_val = gather_nd(var, idx)
        gather_val_new = value - gather_val
        out = scatter_nd_add(var, idx, gather_val_new)
        var[:] = out

    from .layers.control_flow import cond
878

Z
zyfncg 已提交
879 880 881 882
    # If all the bool index is False, just do nothing
    cond(item.any(), lambda: idx_not_empty(var, item, value))

    return var