test_rnn_decode_api.py 30.1 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
G
Guo Sheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import random
G
Guo Sheng 已提交
16
import unittest
17

18
import numpy as np
G
Guo Sheng 已提交
19

20
import paddle
21 22 23
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
24 25 26
import paddle.nn as nn
from paddle import Model, set_device
from paddle.fluid.dygraph import Layer
G
Guo Sheng 已提交
27
from paddle.fluid.executor import Executor
28
from paddle.fluid.framework import _test_eager_guard
29 30
from paddle.nn import BeamSearchDecoder, dynamic_decode
from paddle.static import InputSpec as Input
31

32 33
paddle.enable_static()

G
Guo Sheng 已提交
34

35
class EncoderCell(layers.RNNCell):
36
    def __init__(self, num_layers, hidden_size, dropout_prob=0.0):
G
Guo Sheng 已提交
37 38 39
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
40 41 42
        self.lstm_cells = [
            layers.LSTMCell(hidden_size) for i in range(num_layers)
        ]
G
Guo Sheng 已提交
43 44 45 46 47

    def call(self, step_input, states):
        new_states = []
        for i in range(self.num_layers):
            out, new_state = self.lstm_cells[i](step_input, states[i])
48 49 50 51 52
            step_input = (
                layers.dropout(out, self.dropout_prob)
                if self.dropout_prob > 0
                else out
            )
G
Guo Sheng 已提交
53 54 55 56 57 58 59 60
            new_states.append(new_state)
        return step_input, new_states

    @property
    def state_shape(self):
        return [cell.state_shape for cell in self.lstm_cells]


61
class DecoderCell(layers.RNNCell):
62
    def __init__(self, num_layers, hidden_size, dropout_prob=0.0):
G
Guo Sheng 已提交
63 64 65
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
66 67 68
        self.lstm_cells = [
            layers.LSTMCell(hidden_size) for i in range(num_layers)
        ]
G
Guo Sheng 已提交
69 70

    def attention(self, hidden, encoder_output, encoder_padding_mask):
71 72 73 74 75 76
        query = layers.fc(
            hidden, size=encoder_output.shape[-1], bias_attr=False
        )
        attn_scores = layers.matmul(
            layers.unsqueeze(query, [1]), encoder_output, transpose_y=True
        )
G
Guo Sheng 已提交
77
        if encoder_padding_mask is not None:
78 79 80
            attn_scores = layers.elementwise_add(
                attn_scores, encoder_padding_mask
            )
G
Guo Sheng 已提交
81
        attn_scores = layers.softmax(attn_scores)
82
        attn_out = paddle.squeeze(
83 84
            layers.matmul(attn_scores, encoder_output), [1]
        )
G
Guo Sheng 已提交
85 86 87 88
        attn_out = layers.concat([attn_out, hidden], 1)
        attn_out = layers.fc(attn_out, size=self.hidden_size, bias_attr=False)
        return attn_out

89 90 91
    def call(
        self, step_input, states, encoder_output, encoder_padding_mask=None
    ):
G
Guo Sheng 已提交
92 93 94 95 96
        lstm_states, input_feed = states
        new_lstm_states = []
        step_input = layers.concat([step_input, input_feed], 1)
        for i in range(self.num_layers):
            out, new_lstm_state = self.lstm_cells[i](step_input, lstm_states[i])
97 98 99 100 101
            step_input = (
                layers.dropout(out, self.dropout_prob)
                if self.dropout_prob > 0
                else out
            )
G
Guo Sheng 已提交
102 103 104 105 106
            new_lstm_states.append(new_lstm_state)
        out = self.attention(step_input, encoder_output, encoder_padding_mask)
        return out, [new_lstm_states, out]


107
class Encoder:
108
    def __init__(self, num_layers, hidden_size, dropout_prob=0.0):
109
        self.encoder_cell = EncoderCell(num_layers, hidden_size, dropout_prob)
G
Guo Sheng 已提交
110

111 112 113 114 115
    def __call__(self, src_emb, src_sequence_length):
        encoder_output, encoder_final_state = layers.rnn(
            cell=self.encoder_cell,
            inputs=src_emb,
            sequence_length=src_sequence_length,
116 117
            is_reverse=False,
        )
118 119 120
        return encoder_output, encoder_final_state


121
class Decoder:
122 123 124 125 126 127 128 129
    def __init__(
        self,
        num_layers,
        hidden_size,
        dropout_prob,
        decoding_strategy="infer_sample",
        max_decoding_length=20,
    ):
130 131
        self.decoder_cell = DecoderCell(num_layers, hidden_size, dropout_prob)
        self.decoding_strategy = decoding_strategy
132 133 134 135 136 137 138 139 140 141 142 143 144
        self.max_decoding_length = (
            None
            if (self.decoding_strategy == "train_greedy")
            else max_decoding_length
        )

    def __call__(
        self,
        decoder_initial_states,
        encoder_output,
        encoder_padding_mask,
        **kwargs
    ):
145 146 147 148 149 150 151 152 153 154 155
        output_layer = kwargs.pop("output_layer", None)
        if self.decoding_strategy == "train_greedy":
            # for teach-forcing MLE pre-training
            helper = layers.TrainingHelper(**kwargs)
        elif self.decoding_strategy == "infer_sample":
            helper = layers.SampleEmbeddingHelper(**kwargs)
        elif self.decoding_strategy == "infer_greedy":
            helper = layers.GreedyEmbeddingHelper(**kwargs)

        if self.decoding_strategy == "beam_search":
            beam_size = kwargs.get("beam_size", 4)
156 157 158 159 160 161 162 163 164 165 166 167 168
            encoder_output = (
                layers.BeamSearchDecoder.tile_beam_merge_with_batch(
                    encoder_output, beam_size
                )
            )
            encoder_padding_mask = (
                layers.BeamSearchDecoder.tile_beam_merge_with_batch(
                    encoder_padding_mask, beam_size
                )
            )
            decoder = layers.BeamSearchDecoder(
                cell=self.decoder_cell, output_fn=output_layer, **kwargs
            )
169
        else:
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
            decoder = layers.BasicDecoder(
                self.decoder_cell, helper, output_fn=output_layer
            )

        (
            decoder_output,
            decoder_final_state,
            dec_seq_lengths,
        ) = layers.dynamic_decode(
            decoder,
            inits=decoder_initial_states,
            max_step_num=self.max_decoding_length,
            encoder_output=encoder_output,
            encoder_padding_mask=encoder_padding_mask,
            impute_finished=False  # for test coverage
            if self.decoding_strategy == "beam_search"
            else True,
            is_test=True if self.decoding_strategy == "beam_search" else False,
            return_length=True,
        )
190 191 192
        return decoder_output, decoder_final_state, dec_seq_lengths


193
class Seq2SeqModel:
194 195
    """Seq2Seq model: RNN encoder-decoder with attention"""

196 197 198 199 200 201 202 203 204 205 206 207 208
    def __init__(
        self,
        num_layers,
        hidden_size,
        dropout_prob,
        src_vocab_size,
        trg_vocab_size,
        start_token,
        end_token,
        decoding_strategy="infer_sample",
        max_decoding_length=20,
        beam_size=4,
    ):
209
        self.start_token, self.end_token = start_token, end_token
210 211 212 213
        self.max_decoding_length, self.beam_size = (
            max_decoding_length,
            beam_size,
        )
J
Jiaqi Liu 已提交
214 215 216
        self.src_embeder = paddle.nn.Embedding(
            src_vocab_size,
            hidden_size,
217 218
            weight_attr=fluid.ParamAttr(name="source_embedding"),
        )
J
Jiaqi Liu 已提交
219 220 221
        self.trg_embeder = paddle.nn.Embedding(
            trg_vocab_size,
            hidden_size,
222 223
            weight_attr=fluid.ParamAttr(name="target_embedding"),
        )
224
        self.encoder = Encoder(num_layers, hidden_size, dropout_prob)
225 226 227 228 229 230 231 232 233 234 235 236 237 238
        self.decoder = Decoder(
            num_layers,
            hidden_size,
            dropout_prob,
            decoding_strategy,
            max_decoding_length,
        )
        self.output_layer = lambda x: layers.fc(
            x,
            size=trg_vocab_size,
            num_flatten_dims=len(x.shape) - 1,
            param_attr=fluid.ParamAttr(),
            bias_attr=False,
        )
G
Guo Sheng 已提交
239

240 241 242
    def __call__(self, src, src_length, trg=None, trg_length=None):
        # encoder
        encoder_output, encoder_final_state = self.encoder(
243 244
            self.src_embeder(src), src_length
        )
G
Guo Sheng 已提交
245 246

        decoder_initial_states = [
247 248
            encoder_final_state,
            self.decoder.decoder_cell.get_initial_states(
249 250
                batch_ref=encoder_output, shape=[encoder_output.shape[-1]]
            ),
G
Guo Sheng 已提交
251
        ]
252 253 254
        src_mask = layers.sequence_mask(
            src_length, maxlen=layers.shape(src)[1], dtype="float32"
        )
255 256
        encoder_padding_mask = (src_mask - 1.0) * 1e9
        encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])
G
Guo Sheng 已提交
257

258
        # decoder
259
        decoder_kwargs = (
260
            {
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
                "inputs": self.trg_embeder(trg),
                "sequence_length": trg_length,
            }
            if self.decoder.decoding_strategy == "train_greedy"
            else (
                {
                    "embedding_fn": self.trg_embeder,
                    "beam_size": self.beam_size,
                    "start_token": self.start_token,
                    "end_token": self.end_token,
                }
                if self.decoder.decoding_strategy == "beam_search"
                else {
                    "embedding_fn": self.trg_embeder,
                    "start_tokens": layers.fill_constant_batch_size_like(
                        input=encoder_output,
                        shape=[-1],
                        dtype=src.dtype,
                        value=self.start_token,
                    ),
                    "end_token": self.end_token,
                }
            )
        )
285 286
        decoder_kwargs["output_layer"] = self.output_layer

287 288 289 290 291 292
        (decoder_output, decoder_final_state, dec_seq_lengths) = self.decoder(
            decoder_initial_states,
            encoder_output,
            encoder_padding_mask,
            **decoder_kwargs
        )
293 294
        if self.decoder.decoding_strategy == "beam_search":  # for inference
            return decoder_output
295 296 297 298 299
        logits, samples, sample_length = (
            decoder_output.cell_outputs,
            decoder_output.sample_ids,
            dec_seq_lengths,
        )
300 301 302 303
        probs = layers.softmax(logits)
        return probs, samples, sample_length


304
class PolicyGradient:
305 306 307 308 309 310 311 312 313
    """policy gradient"""

    def __init__(self, lr=None):
        self.lr = lr

    def learn(self, act_prob, action, reward, length=None):
        """
        update policy model self.model with policy gradient algorithm
        """
314 315 316
        self.reward = fluid.layers.py_func(
            func=reward_func, x=[action, length], out=reward
        )
317 318
        neg_log_prob = layers.cross_entropy(act_prob, action)
        cost = neg_log_prob * reward
319
        cost = (
320
            (paddle.sum(cost) / paddle.sum(length))
321 322 323
            if length is not None
            else layers.reduce_mean(cost)
        )
324 325 326 327 328 329 330 331
        optimizer = fluid.optimizer.Adam(self.lr)
        optimizer.minimize(cost)
        return cost


def reward_func(samples, sample_length):
    """toy reward"""

332
    def discount_reward(reward, sequence_length, discount=1.0):
333 334
        return discount_reward_1d(reward, sequence_length, discount)

335
    def discount_reward_1d(reward, sequence_length, discount=1.0, dtype=None):
336 337
        if sequence_length is None:
            raise ValueError(
338 339
                'sequence_length must not be `None` for 1D reward.'
            )
340 341 342 343 344
        reward = np.array(reward)
        sequence_length = np.array(sequence_length)
        batch_size = reward.shape[0]
        max_seq_length = np.max(sequence_length)
        dtype = dtype or reward.dtype
345
        if discount == 1.0:
346
            dmat = np.ones([batch_size, max_seq_length], dtype=dtype)
G
Guo Sheng 已提交
347
        else:
348
            steps = np.tile(np.arange(max_seq_length), [batch_size, 1])
349 350 351
            mask = np.asarray(
                steps < (sequence_length - 1)[:, None], dtype=dtype
            )
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
            # Make each row = [discount, ..., discount, 1, ..., 1]
            dmat = mask * discount + (1 - mask)
            dmat = np.cumprod(dmat[:, ::-1], axis=1)[:, ::-1]
        disc_reward = dmat * reward[:, None]
        disc_reward = mask_sequences(disc_reward, sequence_length, dtype=dtype)
        return disc_reward

    def mask_sequences(sequence, sequence_length, dtype=None, time_major=False):
        sequence = np.array(sequence)
        sequence_length = np.array(sequence_length)
        rank = sequence.ndim
        if rank < 2:
            raise ValueError("`sequence` must be 2D or higher order.")
        batch_size = sequence.shape[0]
        max_time = sequence.shape[1]
        dtype = dtype or sequence.dtype
        if time_major:
            sequence = np.transpose(sequence, axes=[1, 0, 2])
        steps = np.tile(np.arange(max_time), [batch_size, 1])
        mask = np.asarray(steps < sequence_length[:, None], dtype=dtype)
        for _ in range(2, rank):
            mask = np.expand_dims(mask, -1)
        sequence = sequence * mask
        if time_major:
            sequence = np.transpose(sequence, axes=[1, 0, 2])
        return sequence

    samples = np.array(samples)
    sample_length = np.array(sample_length)
    # length reward
    reward = (5 - np.abs(sample_length - 5)).astype("float32")
    # repeat punishment to trapped into local minima getting all same words
    # beam search to get more than one sample may also can avoid this
    for i in range(reward.shape[0]):
386 387 388 389 390 391 392 393 394
        reward[i] += (
            -10
            if sample_length[i] > 1
            and np.all(samples[i][: sample_length[i] - 1] == samples[i][0])
            else 0
        )
    return discount_reward(reward, sample_length, discount=1.0).astype(
        "float32"
    )
395 396


397
class MLE:
398 399 400 401 402 403 404 405 406 407 408
    """teacher-forcing MLE training"""

    def __init__(self, lr=None):
        self.lr = lr

    def learn(self, probs, label, weight=None, length=None):
        loss = layers.cross_entropy(input=probs, label=label, soft_label=False)
        max_seq_len = layers.shape(probs)[1]
        mask = layers.sequence_mask(length, maxlen=max_seq_len, dtype="float32")
        loss = loss * mask
        loss = layers.reduce_mean(loss, dim=[0])
409
        loss = paddle.sum(loss)
410 411 412 413 414
        optimizer = fluid.optimizer.Adam(self.lr)
        optimizer.minimize(loss)
        return loss


415
class SeqPGAgent:
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    def __init__(
        self,
        model_cls,
        alg_cls=PolicyGradient,
        model_hparams={},
        alg_hparams={},
        executor=None,
        main_program=None,
        startup_program=None,
        seed=None,
    ):
        self.main_program = (
            fluid.Program() if main_program is None else main_program
        )
        self.startup_program = (
            fluid.Program() if startup_program is None else startup_program
        )
433 434 435 436 437 438 439 440 441
        if seed is not None:
            self.main_program.random_seed = seed
            self.startup_program.random_seed = seed
        self.build_program(model_cls, alg_cls, model_hparams, alg_hparams)
        self.executor = executor

    def build_program(self, model_cls, alg_cls, model_hparams, alg_hparams):
        with fluid.program_guard(self.main_program, self.startup_program):
            source = fluid.data(name="src", shape=[None, None], dtype="int64")
442 443 444
            source_length = fluid.data(
                name="src_sequence_length", shape=[None], dtype="int64"
            )
445 446
            # only for teacher-forcing MLE training
            target = fluid.data(name="trg", shape=[None, None], dtype="int64")
447 448 449 450 451 452
            target_length = fluid.data(
                name="trg_sequence_length", shape=[None], dtype="int64"
            )
            label = fluid.data(
                name="label", shape=[None, None, 1], dtype="int64"
            )
453 454 455
            self.model = model_cls(**model_hparams)
            self.alg = alg_cls(**alg_hparams)
            self.probs, self.samples, self.sample_length = self.model(
456 457
                source, source_length, target, target_length
            )
458
            self.samples.stop_gradient = True
459
            self.reward = fluid.data(
460
                name="reward",
461
                shape=[None, None],  # batch_size, seq_len
462 463
                dtype=self.probs.dtype,
            )
464
            self.samples.stop_gradient = False
465 466 467
            self.cost = self.alg.learn(
                self.probs, self.samples, self.reward, self.sample_length
            )
468 469 470 471

        # to define the same parameters between different programs
        self.pred_program = self.main_program._prune_with_input(
            [source.name, source_length.name],
472 473
            [self.probs, self.samples, self.sample_length],
        )
474 475 476 477 478

    def predict(self, feed_dict):
        samples, sample_length = self.executor.run(
            self.pred_program,
            feed=feed_dict,
479 480
            fetch_list=[self.samples, self.sample_length],
        )
481 482 483
        return samples, sample_length

    def learn(self, feed_dict, fetch_list):
484 485 486
        results = self.executor.run(
            self.main_program, feed=feed_dict, fetch_list=fetch_list
        )
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        return results


class TestDynamicDecode(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.model_hparams = {
            "num_layers": 2,
            "hidden_size": 32,
            "dropout_prob": 0.1,
            "src_vocab_size": 100,
            "trg_vocab_size": 100,
            "start_token": 0,
            "end_token": 1,
            "decoding_strategy": "infer_greedy",
502
            "max_decoding_length": 10,
503 504 505 506 507 508 509
        }

        self.iter_num = iter_num = 2
        self.batch_size = batch_size = 4
        src_seq_len = 10
        trg_seq_len = 12
        self.data = {
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
            "src": np.random.randint(
                2,
                self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, src_seq_len),
            ).astype("int64"),
            "src_sequence_length": np.random.randint(
                1, src_seq_len, (iter_num * batch_size,)
            ).astype("int64"),
            "trg": np.random.randint(
                2,
                self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len),
            ).astype("int64"),
            "trg_sequence_length": np.random.randint(
                1, trg_seq_len, (iter_num * batch_size,)
            ).astype("int64"),
            "label": np.random.randint(
                2,
                self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len, 1),
            ).astype("int64"),
531 532
        }

533 534 535 536 537
        place = (
            core.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else core.CPUPlace()
        )
538 539 540
        self.exe = Executor(place)

    def test_mle_train(self):
541
        paddle.enable_static()
542
        self.model_hparams["decoding_strategy"] = "train_greedy"
543 544 545 546 547 548 549 550 551 552
        agent = SeqPGAgent(
            model_cls=Seq2SeqModel,
            alg_cls=MLE,
            model_hparams=self.model_hparams,
            alg_hparams={"lr": 0.001},
            executor=self.exe,
            main_program=fluid.Program(),
            startup_program=fluid.Program(),
            seed=123,
        )
553 554 555 556
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
                    "src": self.data["src"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size,
                        :,
                    ],
                    "src_sequence_length": self.data["src_sequence_length"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
                    "trg": self.data["trg"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size,
                        :,
                    ],
                    "trg_sequence_length": self.data["trg_sequence_length"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
                    "label": self.data["label"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
584
                },
585 586 587 588 589 590
                fetch_list=[agent.cost, agent.cost],
            )
            print(
                "iter_idx: %d, reward: %f, cost: %f"
                % (iter_idx, reward.mean(), cost)
            )
591 592

    def test_greedy_train(self):
593
        paddle.enable_static()
594
        self.model_hparams["decoding_strategy"] = "infer_greedy"
595 596 597 598 599 600 601 602 603 604
        agent = SeqPGAgent(
            model_cls=Seq2SeqModel,
            alg_cls=PolicyGradient,
            model_hparams=self.model_hparams,
            alg_hparams={"lr": 0.001},
            executor=self.exe,
            main_program=fluid.Program(),
            startup_program=fluid.Program(),
            seed=123,
        )
605 606 607 608
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
609 610 611 612 613 614 615 616 617 618 619
                    "src": self.data["src"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size,
                        :,
                    ],
                    "src_sequence_length": self.data["src_sequence_length"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
620
                },
621 622 623 624 625 626
                fetch_list=[agent.reward, agent.cost],
            )
            print(
                "iter_idx: %d, reward: %f, cost: %f"
                % (iter_idx, reward.mean(), cost)
            )
627 628

    def test_sample_train(self):
629
        paddle.enable_static()
630
        self.model_hparams["decoding_strategy"] = "infer_sample"
631 632 633 634 635 636 637 638 639 640
        agent = SeqPGAgent(
            model_cls=Seq2SeqModel,
            alg_cls=PolicyGradient,
            model_hparams=self.model_hparams,
            alg_hparams={"lr": 0.001},
            executor=self.exe,
            main_program=fluid.Program(),
            startup_program=fluid.Program(),
            seed=123,
        )
641 642 643 644
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
645 646 647 648 649 650 651 652 653 654 655
                    "src": self.data["src"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size,
                        :,
                    ],
                    "src_sequence_length": self.data["src_sequence_length"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
656
                },
657 658 659 660 661 662
                fetch_list=[agent.reward, agent.cost],
            )
            print(
                "iter_idx: %d, reward: %f, cost: %f"
                % (iter_idx, reward.mean(), cost)
            )
663 664

    def test_beam_search_infer(self):
665 666
        paddle.set_default_dtype("float32")
        paddle.enable_static()
667 668 669 670 671
        self.model_hparams["decoding_strategy"] = "beam_search"
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            source = fluid.data(name="src", shape=[None, None], dtype="int64")
672 673 674
            source_length = fluid.data(
                name="src_sequence_length", shape=[None], dtype="int64"
            )
675 676 677 678 679 680 681 682
            model = Seq2SeqModel(**self.model_hparams)
            output = model(source, source_length)

        self.exe.run(startup_program)
        for iter_idx in range(self.iter_num):
            trans_ids = self.exe.run(
                program=main_program,
                feed={
683 684 685 686 687 688 689 690 691 692 693
                    "src": self.data["src"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size,
                        :,
                    ],
                    "src_sequence_length": self.data["src_sequence_length"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
694
                },
695 696
                fetch_list=[output],
            )[0]
G
Guo Sheng 已提交
697

698
    def func_dynamic_basic_decoder(self):
J
Jiaqi Liu 已提交
699 700 701 702 703 704 705
        paddle.disable_static()
        src = paddle.to_tensor(np.random.randint(8, size=(8, 4)))
        src_length = paddle.to_tensor(np.random.randint(8, size=(8)))
        model = Seq2SeqModel(**self.model_hparams)
        probs, samples, sample_length = model(src, src_length)
        paddle.enable_static()

706 707 708 709 710
    def test_dynamic_basic_decoder(self):
        with _test_eager_guard():
            self.func_dynamic_basic_decoder()
        self.func_dynamic_basic_decoder()

G
Guo Sheng 已提交
711

712 713 714 715 716 717 718 719 720
class ModuleApiTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
        cls._random_seed = 123
        np.random.seed(cls._random_seed)
        random.seed(cls._random_seed)

721
        cls.model_cls = type(
722 723 724
            cls.__name__ + "Model",
            (Layer,),
            {
725
                "__init__": cls.model_init_wrapper(cls.model_init),
726 727 728
                "forward": cls.model_forward,
            },
        )
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745

    @classmethod
    def tearDownClass(cls):
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

    @staticmethod
    def model_init_wrapper(func):
        def __impl__(self, *args, **kwargs):
            Layer.__init__(self)
            func(self, *args, **kwargs)

        return __impl__

    @staticmethod
    def model_init(model, *args, **kwargs):
        raise NotImplementedError(
746 747
            "model_init acts as `Model.__init__`, thus must implement it"
        )
748 749 750 751 752 753 754 755

    @staticmethod
    def model_forward(model, *args, **kwargs):
        return model.module(*args, **kwargs)

    def make_inputs(self):
        # TODO(guosheng): add default from `self.inputs`
        raise NotImplementedError(
756 757
            "model_inputs makes inputs for model, thus must implement it"
        )
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

    def setUp(self):
        """
        For the model which wraps the module to be tested:
            Set input data by `self.inputs` list
            Set init argument values by `self.attrs` list/dict
            Set model parameter values by `self.param_states` dict
            Set expected output data by `self.outputs` list
        We can create a model instance and run once with these.
        """
        self.inputs = []
        self.attrs = {}
        self.param_states = {}
        self.outputs = []

    def _calc_output(self, place, mode="test", dygraph=True):
        if dygraph:
            fluid.enable_dygraph(place)
        else:
            fluid.disable_dygraph()
C
cnn 已提交
778
        gen = paddle.seed(self._random_seed)
779 780 781
        paddle.framework.random._manual_program_seed(self._random_seed)
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
782 783 784 785 786
            layer = (
                self.model_cls(**self.attrs)
                if isinstance(self.attrs, dict)
                else self.model_cls(*self.attrs)
            )
787 788 789 790
            model = Model(layer, inputs=self.make_inputs())
            model.prepare()
            if self.param_states:
                model.load(self.param_states, optim_state=None)
791
            return model.predict_batch(self.inputs)
792 793 794 795 796 797

    def check_output_with_place(self, place, mode="test"):
        dygraph_output = self._calc_output(place, mode, dygraph=True)
        stgraph_output = self._calc_output(place, mode, dygraph=False)
        expect_output = getattr(self, "outputs", None)
        for actual_t, expect_t in zip(dygraph_output, stgraph_output):
798
            np.testing.assert_allclose(actual_t, expect_t, rtol=1e-05, atol=0)
799 800
        if expect_output:
            for actual_t, expect_t in zip(dygraph_output, expect_output):
801 802 803
                np.testing.assert_allclose(
                    actual_t, expect_t, rtol=1e-05, atol=0
                )
804 805 806 807 808 809 810 811 812 813 814 815 816 817

    def check_output(self):
        devices = ["CPU", "GPU"] if fluid.is_compiled_with_cuda() else ["CPU"]
        for device in devices:
            place = set_device(device)
            self.check_output_with_place(place)


class TestBeamSearch(ModuleApiTest):
    def setUp(self):
        paddle.set_default_dtype("float64")
        shape = (8, 32)
        self.inputs = [
            np.random.random(shape).astype("float64"),
818
            np.random.random(shape).astype("float64"),
819 820 821 822 823 824 825 826 827 828
        ]
        self.outputs = None
        self.attrs = {
            "vocab_size": 100,
            "embed_dim": 32,
            "hidden_size": 32,
        }
        self.param_states = {}

    @staticmethod
829 830 831 832 833 834 835 836 837 838 839 840 841
    def model_init(
        self,
        vocab_size,
        embed_dim,
        hidden_size,
        bos_id=0,
        eos_id=1,
        beam_size=4,
        max_step_num=20,
    ):
        embedder = paddle.fluid.dygraph.Embedding(
            size=[vocab_size, embed_dim], dtype="float64"
        )
842 843 844
        output_layer = nn.Linear(hidden_size, vocab_size)
        cell = nn.LSTMCell(embed_dim, hidden_size)
        self.max_step_num = max_step_num
845 846 847 848 849 850 851 852
        self.beam_search_decoder = BeamSearchDecoder(
            cell,
            start_token=bos_id,
            end_token=eos_id,
            beam_size=beam_size,
            embedding_fn=embedder,
            output_fn=output_layer,
        )
853 854 855

    @staticmethod
    def model_forward(model, init_hidden, init_cell):
856 857 858 859 860 861 862
        return dynamic_decode(
            model.beam_search_decoder,
            [init_hidden, init_cell],
            max_step_num=model.max_step_num,
            impute_finished=True,
            is_test=True,
        )[0]
863 864 865 866 867 868 869 870

    def make_inputs(self):
        inputs = [
            Input([None, self.inputs[0].shape[-1]], "float64", "init_hidden"),
            Input([None, self.inputs[1].shape[-1]], "float64", "init_cell"),
        ]
        return inputs

871 872 873
    def func_check_output(self):
        self.setUp()
        self.make_inputs()
874 875
        self.check_output()

876 877 878 879 880
    def test_check_output(self):
        with _test_eager_guard():
            self.func_check_output()
        self.func_check_output()

881

G
Guo Sheng 已提交
882 883
if __name__ == '__main__':
    unittest.main()