test_rnn_decode_api.py 7.8 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy

import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core

from paddle.fluid.executor import Executor
from paddle.fluid import framework

from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell, BeamSearchDecoder, dynamic_decode
from paddle.fluid.layers import rnn as dynamic_rnn
from paddle.fluid import contrib
from paddle.fluid.contrib.layers import basic_lstm

import numpy as np


class EncoderCell(RNNCell):
    def __init__(self, num_layers, hidden_size, dropout_prob=0.):
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
        self.lstm_cells = []
        for i in range(num_layers):
            self.lstm_cells.append(LSTMCell(hidden_size))

    def call(self, step_input, states):
        new_states = []
        for i in range(self.num_layers):
            out, new_state = self.lstm_cells[i](step_input, states[i])
            step_input = layers.dropout(
                out, self.dropout_prob) if self.dropout_prob > 0 else out
            new_states.append(new_state)
        return step_input, new_states

    @property
    def state_shape(self):
        return [cell.state_shape for cell in self.lstm_cells]


class DecoderCell(RNNCell):
    def __init__(self, num_layers, hidden_size, dropout_prob=0.):
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
        self.lstm_cells = []
        for i in range(num_layers):
            self.lstm_cells.append(LSTMCell(hidden_size))

    def attention(self, hidden, encoder_output, encoder_padding_mask):
        query = layers.fc(hidden,
                          size=encoder_output.shape[-1],
                          bias_attr=False)
        attn_scores = layers.matmul(
            layers.unsqueeze(query, [1]), encoder_output, transpose_y=True)
        if encoder_padding_mask is not None:
            attn_scores = layers.elementwise_add(attn_scores,
                                                 encoder_padding_mask)
        attn_scores = layers.softmax(attn_scores)
        attn_out = layers.squeeze(
            layers.matmul(attn_scores, encoder_output), [1])
        attn_out = layers.concat([attn_out, hidden], 1)
        attn_out = layers.fc(attn_out, size=self.hidden_size, bias_attr=False)
        return attn_out

    def call(self,
             step_input,
             states,
             encoder_output,
             encoder_padding_mask=None):
        lstm_states, input_feed = states
        new_lstm_states = []
        step_input = layers.concat([step_input, input_feed], 1)
        for i in range(self.num_layers):
            out, new_lstm_state = self.lstm_cells[i](step_input, lstm_states[i])
            step_input = layers.dropout(
                out, self.dropout_prob) if self.dropout_prob > 0 else out
            new_lstm_states.append(new_lstm_state)
        out = self.attention(step_input, encoder_output, encoder_padding_mask)
        return out, [new_lstm_states, out]


class TestDynamicDecode(unittest.TestCase):
    def setUp(self):
        self.batch_size = 4
        self.input_size = 16
        self.hidden_size = 16
        self.seq_len = 4

    def test_run(self):
        start_token = 0
        end_token = 1
        src_vocab_size = 10
        trg_vocab_size = 10
        num_layers = 1
        hidden_size = self.hidden_size
        beam_size = 8
        max_length = self.seq_len

        src = layers.data(name="src", shape=[-1, 1], dtype='int64')
        src_len = layers.data(name="src_len", shape=[-1], dtype='int64')

        trg = layers.data(name="trg", shape=[-1, 1], dtype='int64')
        trg_len = layers.data(name="trg_len", shape=[-1], dtype='int64')

        src_embeder = lambda x: fluid.embedding(
            x,
            size=[src_vocab_size, hidden_size],
            param_attr=fluid.ParamAttr(name="src_embedding"))

        trg_embeder = lambda x: fluid.embedding(
            x,
            size=[trg_vocab_size, hidden_size],
            param_attr=fluid.ParamAttr(name="trg_embedding"))

        # use basic_lstm
        encoder_cell = EncoderCell(num_layers, hidden_size)
        encoder_output, encoder_final_state = dynamic_rnn(
            cell=encoder_cell,
            inputs=src_embeder(src),
            sequence_length=src_len,
            is_reverse=False)

        src_mask = layers.sequence_mask(
            src_len, maxlen=layers.shape(src)[1], dtype='float32')
        encoder_padding_mask = (src_mask - 1.0) * 1000000000
        encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])

        decoder_cell = DecoderCell(num_layers, hidden_size)
        decoder_initial_states = [
            encoder_final_state, decoder_cell.get_initial_states(
                batch_ref=encoder_output, shape=[hidden_size])
        ]

        decoder_output, _ = dynamic_rnn(
            cell=decoder_cell,
            inputs=trg_embeder(trg),
            initial_states=decoder_initial_states,
            sequence_length=None,
            encoder_output=encoder_output,
            encoder_padding_mask=encoder_padding_mask)

        output_layer = lambda x: layers.fc(x,
                                           size=trg_vocab_size,
                                           num_flatten_dims=len(x.shape) - 1,
                                           param_attr=fluid.ParamAttr(
                                               name="output_w"),
                                           bias_attr=False)

        # inference
        encoder_output = BeamSearchDecoder.tile_beam_merge_with_batch(
            encoder_output, beam_size)
        encoder_padding_mask = BeamSearchDecoder.tile_beam_merge_with_batch(
            encoder_padding_mask, beam_size)
        beam_search_decoder = BeamSearchDecoder(
            decoder_cell,
            start_token,
            end_token,
            beam_size,
            embedding_fn=trg_embeder,
            output_fn=output_layer)
        outputs, _ = dynamic_decode(
            beam_search_decoder,
            inits=decoder_initial_states,
            max_step_num=max_length,
            encoder_output=encoder_output,
            encoder_padding_mask=encoder_padding_mask)

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = Executor(place)
        exe.run(framework.default_startup_program())

        src_np = np.random.randint(
            0, src_vocab_size, (self.batch_size, max_length)).astype('int64')
        src_len_np = np.ones(self.batch_size, dtype='int64') * max_length
        trg_np = np.random.randint(
            0, trg_vocab_size, (self.batch_size, max_length)).astype('int64')
        trg_len_np = np.ones(self.batch_size, dtype='int64') * max_length

        out = exe.run(feed={
            'src': src_np,
            'src_len': src_len_np,
            'trg': trg_np,
            'trg_len': trg_len_np
        },
                      fetch_list=[outputs])

        self.assertTrue(out[0].shape[0] == self.batch_size)
        self.assertTrue(out[0].shape[1] <= max_length + 1)
        self.assertTrue(out[0].shape[2] == beam_size)


if __name__ == '__main__':
    unittest.main()