concat_mkldnn_op.cc 8.0 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
M
Michal Gallus 已提交
16 17
#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::concat;
using mkldnn::stream;
using platform::to_void_cast;

static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
33 34
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
35
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
36
                      "Wrong format set for Input tensor");
M
Michal Gallus 已提交
37 38 39
  }
}

A
Adam 已提交
40 41 42
static memory::desc CreateMemDesc(const Tensor& input,
                                  const memory::data_type& dt) {
  const auto dims = paddle::framework::vectorize<int64_t>(input.dims());
M
Michal Gallus 已提交
43
  const auto format = input.format();
A
Adam 已提交
44 45
  auto mem_desc = memory::desc(dims, dt, format);
  return mem_desc;
M
Michal Gallus 已提交
46 47 48 49 50 51 52
}

static platform::CPUPlace GetCpuPlace(
    const paddle::framework::ExecutionContext& ctx) {
  auto place = ctx.GetPlace();
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(place),
                 "It must use CPUPlace.");
53
  return BOOST_GET_CONST(platform::CPUPlace, place);
M
Michal Gallus 已提交
54 55
}

M
Michal Gallus 已提交
56
static const mkldnn::engine& GetMKLDNNEngine(
57 58 59
    const paddle::framework::ExecutionContext& ctx) {
  auto& dev_ctx = ctx.template device_context<platform::MKLDNNDeviceContext>();
  return dev_ctx.GetEngine();
M
Michal Gallus 已提交
60
}
M
Michal Gallus 已提交
61

62 63 64 65 66 67 68 69 70 71
// From a multi-input, gather only nonempty inputs
static const std::vector<const Tensor*> ReduceMultiInput(
    const std::vector<const Tensor*>& inputs) {
  std::vector<const Tensor*> reduced(inputs.size());
  auto end_it = std::copy_if(inputs.begin(), inputs.end(), reduced.begin(),
                             [](const Tensor* t) { return t->numel() > 0; });
  reduced.resize(std::distance(reduced.begin(), end_it));
  return reduced;
}

M
Michal Gallus 已提交
72 73 74 75 76
template <typename T>
class ConcatPrimitiveFactory {
 public:
  concat::primitive_desc CreateConcatPrimDescriptor(
      const std::vector<const Tensor*> multi_input, Tensor* output,
77 78 79 80
      int concat_axis, const mkldnn::engine& mkldnn_engine,
      const memory::data_type& dt = memory::data_type::f32) {
    CreateSourcesDescriptors(multi_input, mkldnn_engine, dt);
    auto dst_desc = CreateDstMemDescriptor(output, dt);
A
Adam 已提交
81
    return concat::primitive_desc(dst_desc, concat_axis, srcs_d, mkldnn_engine);
M
Michal Gallus 已提交
82
  }
M
Michal Gallus 已提交
83

M
Michal Gallus 已提交
84
  concat CreateConcatPrimitive(const concat::primitive_desc& concat_pd,
A
Adam 已提交
85 86 87 88 89
                               Tensor* output, platform::CPUPlace place,
                               const mkldnn::engine& mkldnn_engine) {
    dst_mem = mkldnn::memory(concat_pd.dst_desc(), mkldnn_engine,
                             output->mutable_data<T>(place));
    return concat(concat_pd);
M
Michal Gallus 已提交
90 91
  }

92 93 94 95 96 97 98 99 100 101 102 103 104
  void SetSrcDataHandleByIndex(const std::vector<memory>& srcs, const size_t& i,
                               void* handler) {
    srcs[i].set_data_handle(handler);
  }

  void SetDstDataHandle(const memory& dst_mem, void* handler) {
    dst_mem.set_data_handle(handler);
  }

  std::vector<memory> GetSrcs() { return srcs; }

  memory GetDst() { return dst_mem.get(); }

M
Michal Gallus 已提交
105
 private:
106 107
  memory::desc CreateDstMemDescriptor(Tensor* output,
                                      const memory::data_type& dt) {
A
Adam 已提交
108
    auto dst_dims = paddle::framework::vectorize<int64_t>(output->dims());
109
    return memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);
M
Michal Gallus 已提交
110 111 112
  }

  void CreateSourcesDescriptors(const std::vector<const Tensor*> multi_input,
113 114
                                const mkldnn::engine& mkldnn_engine,
                                const memory::data_type& dt) {
M
Michal Gallus 已提交
115
    for (size_t i = 0; i < multi_input.size(); i++) {
A
Adam 已提交
116 117 118 119
      auto mem_desc = CreateMemDesc(*multi_input[i], dt);
      srcs_d.push_back(mem_desc);
      srcs.push_back(memory(mem_desc, mkldnn_engine,
                            to_void_cast(multi_input[i]->data<T>())));
M
Michal Gallus 已提交
120
    }
M
Michal Gallus 已提交
121 122 123
  }

 private:
A
Adam 已提交
124 125 126
  std::vector<memory::desc> srcs_d;
  std::vector<mkldnn::memory> srcs;
  boost::optional<mkldnn::memory> dst_mem;
127
};
M
Michal Gallus 已提交
128 129 130 131 132

template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
133
    auto multi_input = ReduceMultiInput(ctx.MultiInput<Tensor>("X"));
M
Michal Gallus 已提交
134 135
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
A
Adam 已提交
136
    int concat_axis = ctx.Attr<int>("axis");
137 138 139 140 141 142
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    auto place = GetCpuPlace(ctx);

    memory::data_type dt =
        paddle::framework::ToMKLDNNDataType(multi_input[0]->type());
M
Michal Gallus 已提交
143 144

    ConcatPrimitiveFactory<T> prim_creator;
145 146
    // If one of the multiple inputs of concat has an input size of 0, the
    // actual size of the multi_input will change
147
    std::string key = platform::CreateKey(
148
        paddle::framework::vectorize<int>(multi_input[0]->dims()),
149 150
        multi_input.size(), ctx.OutputName("Out"), dt,
        platform::ThreadIDasStr());
A
Adam 已提交
151

152 153 154 155 156 157 158 159 160 161
    const std::string key_prim = key + "@concat_p";
    const std::string key_concat_pd = key + "@concat_pd";
    const std::string key_srcs = key + "@concat_srcs";
    const std::string key_dst = key + "@concat_dst";

    std::shared_ptr<concat::primitive_desc> concat_pd;
    std::shared_ptr<std::vector<memory>> srcs;
    std::shared_ptr<memory> dst_mem;
    auto concat_p = std::static_pointer_cast<concat>(dev_ctx.GetBlob(key_prim));

A
Adam 已提交
162
    const auto& mkldnn_engine = dev_ctx.GetEngine();
163 164
    if (concat_p == nullptr) {
      concat_pd = std::make_shared<concat::primitive_desc>(
A
Adam 已提交
165 166 167 168
          prim_creator.CreateConcatPrimDescriptor(
              multi_input, output, concat_axis, mkldnn_engine, dt));
      concat_p = std::make_shared<concat>(prim_creator.CreateConcatPrimitive(
          *concat_pd, output, place, mkldnn_engine));
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
      srcs = std::make_shared<std::vector<memory>>(prim_creator.GetSrcs());
      dst_mem = std::make_shared<memory>(prim_creator.GetDst());
      dev_ctx.SetBlob(key_prim, concat_p);
      dev_ctx.SetBlob(key_concat_pd, concat_pd);
      dev_ctx.SetBlob(key_srcs, srcs);
      dev_ctx.SetBlob(key_dst, dst_mem);
    } else {
      srcs = std::static_pointer_cast<std::vector<memory>>(
          dev_ctx.GetBlob(key_srcs));
      dst_mem = std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_dst));
      concat_pd = std::static_pointer_cast<concat::primitive_desc>(
          dev_ctx.GetBlob(key_concat_pd));
      for (size_t i = 0; i < multi_input.size(); i++) {
        prim_creator.SetSrcDataHandleByIndex(
            *srcs, i, to_void_cast<T>(multi_input[i]->data<T>()));
      }
      prim_creator.SetDstDataHandle(*dst_mem, output->mutable_data<T>(place));
    }

A
Adam 已提交
188 189 190 191 192 193 194 195 196
    mkldnn::stream astream(mkldnn_engine);
    std::unordered_map<int, memory> args;
    for (size_t i = 0; i < multi_input.size(); ++i) {
      args.insert({MKLDNN_ARG_MULTIPLE_SRC + i, (*srcs).at(i)});
    }
    args.insert({MKLDNN_ARG_DST, *dst_mem});

    concat_p->execute(astream, args);
    astream.wait();
M
Michal Gallus 已提交
197

198
    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
199
    output->set_format(platform::GetMKLDNNFormat(*dst_mem));
M
Michal Gallus 已提交
200 201 202 203 204 205 206 207
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
208 209 210
                   ops::ConcatMKLDNNOpKernel<float>,
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);