Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
738069e4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
738069e4
编写于
12月 03, 2018
作者:
M
Michal Gallus
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactor MKL-DNN Concat
test=develop
上级
208f9125
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
72 addition
and
137 deletion
+72
-137
paddle/fluid/operators/concat_mkldnn_op.cc
paddle/fluid/operators/concat_mkldnn_op.cc
+72
-137
未找到文件。
paddle/fluid/operators/concat_mkldnn_op.cc
浏览文件 @
738069e4
...
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
...
...
@@ -26,25 +27,6 @@ using mkldnn::concat;
using
mkldnn
::
stream
;
using
platform
::
to_void_cast
;
// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Make hashing function more optimial
static
std
::
string
gethash
(
const
memory
::
dims
&
input_dims
,
const
std
::
string
&
pooling_type
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
string
&
suffix
)
{
auto
dims2str
=
[](
const
memory
::
dims
&
operand_dims
)
{
std
::
string
dstr
=
""
;
for
(
size_t
i
=
0
;
i
<
operand_dims
.
size
();
++
i
)
{
dstr
+=
std
::
to_string
(
operand_dims
[
i
])
+
"-"
;
}
return
dstr
;
};
return
dims2str
(
input_dims
)
+
dims2str
(
ksize
)
+
dims2str
(
strides
)
+
dims2str
(
paddings
)
+
pooling_type
+
suffix
;
}
static
void
EnforceLayouts
(
const
std
::
vector
<
const
Tensor
*>
inputs
)
{
for
(
auto
*
input
:
inputs
)
{
const
bool
is_layout_correct
=
input
->
layout
()
==
DataLayout
::
kMKLDNN
;
...
...
@@ -56,7 +38,7 @@ static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
}
static
memory
::
primitive_desc
CreateMemPrimDesc
(
const
framework
::
Tensor
&
input
,
const
mkldnn
::
engine
&
engine
)
{
const
Tensor
&
input
,
const
mkldnn
::
engine
&
engine
)
{
constexpr
auto
data_type
=
mkldnn
::
memory
::
f32
;
const
auto
dims
=
paddle
::
framework
::
vectorize2int
(
input
.
dims
());
const
auto
format
=
input
.
format
();
...
...
@@ -65,6 +47,11 @@ static memory::primitive_desc CreateMemPrimDesc(
return
mem_prim_desc
;
}
static
mkldnn
::
memory
::
format
GetDstMemFormat
(
const
concat
::
primitive_desc
&
concat_pd
)
{
return
(
memory
::
format
)
concat_pd
.
dst_primitive_desc
().
desc
().
data
.
format
;
}
static
platform
::
CPUPlace
GetCpuPlace
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
{
auto
place
=
ctx
.
GetPlace
();
...
...
@@ -73,139 +60,87 @@ static platform::CPUPlace GetCpuPlace(
return
boost
::
get
<
platform
::
CPUPlace
>
(
place
);
}
template
<
typename
T
>
class
ConcatMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
place
=
GetCpuPlace
(
ctx
);
static
const
mkldnn
::
engine
&
GetMKLDNNEngine
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
return
dev_ctx
.
GetEngine
();
}
auto
multi_input
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
framework
::
Tensor
*
output
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
int64_t
concat_axis
=
static_cast
<
int64_t
>
(
ctx
.
Attr
<
int
>
(
"axis"
));
template
<
typename
T
>
class
ConcatPrimitiveFactory
{
public:
concat
::
primitive_desc
CreateConcatPrimDescriptor
(
const
std
::
vector
<
const
Tensor
*>
multi_input
,
Tensor
*
output
,
int
concat_axis
,
const
mkldnn
::
engine
&
mkldnn_engine
)
{
CreateSourcesDescriptors
(
multi_input
,
mkldnn_engine
);
auto
dst_desc
=
CreateDstMemDescriptor
(
output
);
return
concat
::
primitive_desc
(
dst_desc
,
concat_axis
,
srcs_pd
);
}
EnforceLayouts
(
multi_input
);
concat
CreateConcatPrimitive
(
const
concat
::
primitive_desc
&
concat_pd
,
Tensor
*
output
,
platform
::
CPUPlace
place
)
{
CreateSourcePrimitiveAts
();
auto
dst_mem
=
CreateDstMemory
(
concat_pd
,
output
,
place
);
return
concat
(
concat_pd
,
inputs
,
dst_mem
);
}
private:
memory
::
desc
CreateDstMemDescriptor
(
Tensor
*
output
)
{
auto
dst_dims
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
return
memory
::
desc
(
dst_dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
any
);
}
mkldnn
::
memory
CreateDstMemory
(
const
concat
::
primitive_desc
&
concat_pd
,
Tensor
*
output
,
platform
::
CPUPlace
place
)
{
return
memory
(
concat_pd
.
dst_primitive_desc
(),
output
->
mutable_data
<
T
>
(
place
));
}
std
::
vector
<
memory
::
primitive_desc
>
srcs_pd
;
std
::
vector
<
memory
>
srcs
;
void
CreateSourcesDescriptors
(
const
std
::
vector
<
const
Tensor
*>
multi_input
,
const
mkldnn
::
engine
&
mkldnn_engine
)
{
for
(
size_t
i
=
0
;
i
<
multi_input
.
size
();
i
++
)
{
auto
mem_prim_desc
=
CreateMemPrimDesc
(
*
multi_input
[
i
],
mkldnn_engine
);
srcs_pd
.
push_back
(
mem_prim_desc
);
srcs
.
push_back
(
memory
(
mem_prim_desc
,
to_void_cast
(
multi_input
[
i
]
->
data
<
T
>
())));
srcs
.
push_back
(
memory
(
mem_prim_desc
,
to_void_cast
(
multi_input
[
i
]
->
data
<
T
>
())));
}
auto
dst_dims
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
auto
dst_desc
=
memory
::
desc
(
dst_dims
,
mkldnn
::
memory
::
f32
,
memory
::
format
::
any
);
auto
concat_pd
=
concat
::
primitive_desc
(
dst_desc
,
static_cast
<
int
>
(
concat_axis
),
srcs_pd
);
auto
dst_mem
=
memory
(
concat_pd
.
dst_primitive_desc
(),
output
->
mutable_data
<
T
>
(
place
));
}
std
::
vector
<
primitive
::
at
>
inputs
;
//= {srcs};
void
CreateSourcePrimitiveAts
()
{
inputs
.
reserve
(
srcs
.
size
());
for
(
size_t
i
=
0
;
i
<
srcs
.
size
();
i
++
)
{
inputs
.
push_back
(
srcs
[
i
]);
}
auto
concat_prim
=
concat
(
concat_pd
,
inputs
,
dst_mem
);
std
::
vector
<
primitive
>
pipeline
;
pipeline
.
push_back
(
concat_prim
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
// TODO(mgallus): When this is not workin' split into decl and def
/*
const T* input_data = input->data<T>();
T* output_data = output->mutable_data<T>(ctx.GetPlace());
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
auto input_format = input->format();
memory::format output_format{memory::format::format_undef};
const std::string key = gethash(src_tz, pooling_type, ksize, strides,
paddings, ctx.op().Output("Out"));
const std::string key_pool_p = key + "@pool_p";
const std::string key_pool_pd = key + "@pool_pd";
const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
const std::string key_pool_workspace_memory =
key + "@pool_workspace_memory";
auto pool_p =
std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
if (pool_p == nullptr) {
const std::vector<int>& padding_left_top(paddings);
std::vector<int> padding_right_bottom(paddings);
bool ceil_mode = ctx.Attr<bool>("ceil_mode");
if (ceil_mode) {
CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
padding_right_bottom);
}
auto src_md = platform::MKLDNNMemDesc(
src_tz, platform::MKLDNNGetDataType<T>(), input_format);
auto dst_md = platform::MKLDNNMemDesc(dst_tz, mkldnn::memory::f32,
mkldnn::memory::format::any);
std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
CreatePrimitiveDesc(src_md, dst_md, strides, padding_left_top,
padding_right_bottom, ksize, pooling_type,
mkldnn_engine, ceil_mode, is_test);
// save pool_pd into global device context to be referred in backward path
if (!is_test) dev_ctx.SetBlob(key_pool_pd, pool_pd);
auto src_memory = std::make_shared<memory>(pool_pd->src_primitive_desc(),
to_void_cast<T>(input_data));
auto dst_memory =
std::make_shared<memory>(pool_pd->dst_primitive_desc(), output_data);
dev_ctx.SetBlob(key_pool_src_mem_p, src_memory);
dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory);
if (is_test) {
pool_p = std::make_shared<pooling_forward>(*pool_pd, *src_memory,
*dst_memory);
} else {
std::shared_ptr<mkldnn::memory> workspace_memory =
CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);
// save pool_workspace_memory to be referred in backward path
dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);
pool_p = std::make_shared<pooling_forward>(
*pool_pd, *src_memory, *dst_memory, *workspace_memory);
}
dev_ctx.SetBlob(key_pool_p, pool_p);
output_format =
(memory::format)dst_memory->get_primitive_desc().desc().data.format;
} else {
// Primitives already exist
auto pool_src_memory_p =
std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
PADDLE_ENFORCE(pool_src_memory_p != nullptr,
"Fail to find pooling src mem_p in device context");
auto pool_dst_memory_p =
std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
PADDLE_ENFORCE(pool_dst_memory_p != nullptr,
"Fail to find pooling dst mem_p in device context");
pool_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
pool_dst_memory_p->set_data_handle(output_data);
output_format = (memory::format)pool_dst_memory_p->get_primitive_desc()
.desc()
.data.format;
}
}
private:
std
::
vector
<
memory
::
primitive_desc
>
srcs_pd
;
std
::
vector
<
memory
>
srcs
;
std
::
vector
<
primitive
::
at
>
inputs
;
};
template
<
typename
T
>
class
ConcatMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
place
=
GetCpuPlace
(
ctx
);
const
auto
&
mkldnn_engine
=
GetMKLDNNEngine
(
ctx
);
auto
multi_input
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
EnforceLayouts
(
multi_input
);
Tensor
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
int64_t
concat_axis
=
static_cast
<
int64_t
>
(
ctx
.
Attr
<
int
>
(
"axis"
));
ConcatPrimitiveFactory
<
T
>
prim_creator
;
auto
concat_pd
=
prim_creator
.
CreateConcatPrimDescriptor
(
multi_input
,
output
,
static_cast
<
int
>
(
concat_axis
),
mkldnn_engine
);
auto
concat
=
prim_creator
.
CreateConcatPrimitive
(
concat_pd
,
output
,
place
);
stream
(
stream
::
kind
::
eager
).
submit
({
concat
}).
wait
();
// push primitive to stream and wait until it's executed
std::vector<mkldnn::primitive> pipeline{*(pool_p.get())};
stream(stream::kind::eager).submit(pipeline).wait();
*/
output
->
mutable_data
(
place
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
((
memory
::
format
)
dst_mem
.
get_primitive_desc
().
desc
()
.
data
.
format
);
output
->
set_format
(
GetDstMemFormat
(
concat_pd
));
}
};
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录