gelu_kernel.cu 3.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17
// clang-format will try to sort headers according to google c++ style,
// and that cause compiling problems.
// clang-format off
18 19 20 21 22 23 24 25
#include "paddle/phi/kernels/gelu_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/gpu/gelu_funcs.h"
26
// clang-format on
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

DECLARE_bool(use_fast_math);

namespace phi {

template <typename T>
struct GeluWithApproximateFunctor {
  using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
  inline HOSTDEVICE T operator()(T arg_x) {
    // this function is tanh approximation of gelu
    MPType x = static_cast<MPType>(arg_x);
    MPType one = static_cast<MPType>(1);
    MPType half = static_cast<MPType>(0.5);
    MPType kAlpha = static_cast<MPType>(M_2_SQRTPI * M_SQRT1_2);
    auto tanh_out =
        tanh(kAlpha * x * (one + static_cast<MPType>(GELU_CONSTANT) * x * x));
    MPType out = x * half * (one + tanh_out);
    return static_cast<T>(out);
  }
};

template <typename T>
struct GeluWithoutApproximateFunctor {
  using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
  inline HOSTDEVICE T operator()(T arg_x) {
    // actual gelu with approximation = false
    MPType x = static_cast<MPType>(arg_x);
    return static_cast<T>(x * normcdf(x));
  }
};

template <typename T, typename Context>
void GeluKernel(const Context& dev_ctx,
                const DenseTensor& x,
                bool approximate,
                DenseTensor* out) {
  dev_ctx.template Alloc<T>(out);
  std::vector<const DenseTensor*> ins = {&x};
  std::vector<DenseTensor*> outs = {out};
  if (approximate) {
#ifdef __NVCC__
    if (std::is_same<T, dtype::float16>::value) {
      size_t n = x.numel();
      const auto* in_ptr = reinterpret_cast<const __half*>(x.data<T>());
      auto* out_ptr = reinterpret_cast<__half*>(out->data<T>());
      if (TryLaunchFP16FastGeluFwdVectorizeCUDAKernel(
              dev_ctx, in_ptr, out_ptr, n)) {
        return;
      }
    }
#endif
78 79 80
    using Functor = GeluWithApproximateFunctor<T>;
    phi::funcs::ElementwiseKernel<T, Functor, 1>(
        dev_ctx, ins, &outs, Functor());
81
  } else {
82 83 84
    using Functor = GeluWithoutApproximateFunctor<T>;
    phi::funcs::ElementwiseKernel<T, Functor, 1>(
        dev_ctx, ins, &outs, Functor());
85 86 87 88 89 90 91 92 93 94 95
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(gelu,
                   GPU,
                   ALL_LAYOUT,
                   phi::GeluKernel,
                   float,
                   double,
96 97
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}