Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0d878f1a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0d878f1a
编写于
5月 20, 2022
作者:
N
niuliling123
提交者:
GitHub
5月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Delete ElementwiseKernel in BroadcastKernel (#42779)
上级
c5d3bc0e
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
80 addition
and
48 deletion
+80
-48
paddle/phi/kernels/funcs/broadcast_function.h
paddle/phi/kernels/funcs/broadcast_function.h
+6
-16
paddle/phi/kernels/gpu/gelu_grad_kernel.cu
paddle/phi/kernels/gpu/gelu_grad_kernel.cu
+6
-4
paddle/phi/kernels/gpu/gelu_kernel.cu
paddle/phi/kernels/gpu/gelu_kernel.cu
+6
-4
paddle/phi/kernels/gpu/reduce_grad.h
paddle/phi/kernels/gpu/reduce_grad.h
+7
-14
paddle/phi/kernels/gpu/reduce_mean_grad_kernel.cu
paddle/phi/kernels/gpu/reduce_mean_grad_kernel.cu
+17
-2
paddle/phi/kernels/gpu/reduce_sum_grad_kernel.cu
paddle/phi/kernels/gpu/reduce_sum_grad_kernel.cu
+34
-3
paddle/phi/kernels/gpu/where_kernel.cu
paddle/phi/kernels/gpu/where_kernel.cu
+1
-2
paddle/phi/kernels/kps/bitwise_kernel.cu
paddle/phi/kernels/kps/bitwise_kernel.cu
+3
-3
未找到文件。
paddle/phi/kernels/funcs/broadcast_function.h
浏览文件 @
0d878f1a
...
...
@@ -585,26 +585,16 @@ void BroadcastKernel(const KPDevice &ctx,
Functor
func
)
{
std
::
vector
<
int
>
dims_size
;
dims_size
.
reserve
(
ins
.
size
());
bool
no_broadcast_flag
=
true
;
for
(
auto
*
in
:
ins
)
{
no_broadcast_flag
&=
ins
[
0
]
->
dims
()
==
in
->
dims
();
dims_size
.
emplace_back
(
in
->
dims
().
size
());
}
if
(
ins
.
size
()
>
0
&&
outs
->
size
()
>
0
)
{
no_broadcast_flag
&=
outs
->
at
(
0
)
->
dims
()
==
ins
[
0
]
->
dims
();
}
if
(
no_broadcast_flag
)
{
phi
::
funcs
::
ElementwiseKernel
<
OutT
,
Functor
,
NumOuts
>
(
ctx
,
ins
,
outs
,
func
);
}
else
{
axis
=
axis
==
-
1
?
*
std
::
max_element
(
dims_size
.
begin
(),
dims_size
.
end
())
-
*
std
::
min_element
(
dims_size
.
begin
(),
dims_size
.
end
())
:
axis
;
BroadcastKernelForDifferentVecSize
<
ET
,
InT
,
OutT
,
Functor
,
NumOuts
>
(
ctx
,
ins
,
outs
,
axis
,
func
);
}
axis
=
axis
==
-
1
?
*
std
::
max_element
(
dims_size
.
begin
(),
dims_size
.
end
())
-
*
std
::
min_element
(
dims_size
.
begin
(),
dims_size
.
end
())
:
axis
;
BroadcastKernelForDifferentVecSize
<
ET
,
InT
,
OutT
,
Functor
,
NumOuts
>
(
ctx
,
ins
,
outs
,
axis
,
func
);
}
template
<
typename
Functor
,
typename
T
,
typename
OutType
=
T
>
...
...
paddle/phi/kernels/gpu/gelu_grad_kernel.cu
浏览文件 @
0d878f1a
...
...
@@ -81,11 +81,13 @@ void GeluGradKernel(const Context& dev_ctx,
}
}
#endif
phi
::
funcs
::
BroadcastKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
0
,
GeluWithApproximateGradFunctor
<
T
>
());
using
Functor
=
GeluWithApproximateGradFunctor
<
T
>
;
phi
::
funcs
::
ElementwiseKernel
<
T
,
Functor
,
1
>
(
dev_ctx
,
ins
,
&
outs
,
Functor
());
}
else
{
phi
::
funcs
::
BroadcastKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
0
,
GeluWithoutApproximateGradFunctor
<
T
>
());
using
Functor
=
GeluWithoutApproximateGradFunctor
<
T
>
;
phi
::
funcs
::
ElementwiseKernel
<
T
,
Functor
,
1
>
(
dev_ctx
,
ins
,
&
outs
,
Functor
());
}
}
...
...
paddle/phi/kernels/gpu/gelu_kernel.cu
浏览文件 @
0d878f1a
...
...
@@ -71,11 +71,13 @@ void GeluKernel(const Context& dev_ctx,
}
}
#endif
phi
::
funcs
::
BroadcastKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
0
,
GeluWithApproximateFunctor
<
T
>
());
using
Functor
=
GeluWithApproximateFunctor
<
T
>
;
phi
::
funcs
::
ElementwiseKernel
<
T
,
Functor
,
1
>
(
dev_ctx
,
ins
,
&
outs
,
Functor
());
}
else
{
phi
::
funcs
::
BroadcastKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
0
,
GeluWithoutApproximateFunctor
<
T
>
());
using
Functor
=
GeluWithoutApproximateFunctor
<
T
>
;
phi
::
funcs
::
ElementwiseKernel
<
T
,
Functor
,
1
>
(
dev_ctx
,
ins
,
&
outs
,
Functor
());
}
}
...
...
paddle/phi/kernels/gpu/reduce_grad.h
浏览文件 @
0d878f1a
...
...
@@ -43,22 +43,19 @@ void ReduceGrad(const GPUContext& dev_ctx,
}));
}
template
<
typename
T
,
typename
Context
,
template
<
typename
,
typename
>
class
TransformOp
>
template
<
typename
T
,
typename
OutT
,
typename
Context
,
typename
Functor
>
void
ReduceGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
DenseTensor
*
x_grad
,
Functor
functor
)
{
auto
*
in_x
=
&
x
;
auto
*
d_out
=
&
out_grad
;
auto
*
d_x
=
x_grad
;
auto
pt_out_dtype
=
x
.
dtype
();
// get reduce_dim and reduce_num for reduce_mean_grad
int
dim_size
=
in_x
->
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
=
...
...
@@ -79,14 +76,10 @@ void ReduceGradKernel(const Context& dev_ctx,
auto
pt_d_out
=
new_d_out
;
auto
pt_d_x
=
*
d_x
;
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
phi
::
ReduceGrad
<
T
,
TransformOp
<
T
,
MPType
>>
(
dev_ctx
,
&
pt_d_out
,
&
pt_d_x
,
pt_out_dtype
,
TransformOp
<
T
,
MPType
>
(
reduce_num
));
std
::
vector
<
const
DenseTensor
*>
inputs
=
{
&
pt_d_out
};
std
::
vector
<
DenseTensor
*>
outputs
=
{
&
pt_d_x
};
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kUnary
,
T
,
OutT
>
(
dev_ctx
,
inputs
,
&
outputs
,
0
,
functor
);
}
}
// namespace phi
...
...
paddle/phi/kernels/gpu/reduce_mean_grad_kernel.cu
浏览文件 @
0d878f1a
...
...
@@ -29,8 +29,23 @@ void ReduceMeanGradKernel(const Context& dev_ctx,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
ReduceGradKernel
<
T
,
Context
,
kps
::
DivideFunctor
>
(
dev_ctx
,
x
,
out_grad
,
dims
,
keep_dim
,
reduce_all
,
x_grad
);
int
dim_size
=
x
.
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
=
funcs
::
details
::
GetReduceDim
(
dims
,
dim_size
,
reduce_all
);
int
reduce_num
=
1
;
for
(
auto
i
:
reduce_dims
)
{
reduce_num
*=
(
x
.
dims
())[
i
];
}
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
ReduceGradKernel
<
T
,
T
,
Context
,
kps
::
DivideFunctor
<
T
,
MPType
>>
(
dev_ctx
,
x
,
out_grad
,
dims
,
keep_dim
,
reduce_all
,
x_grad
,
kps
::
DivideFunctor
<
T
,
MPType
>
(
reduce_num
));
}
}
// namespace phi
...
...
paddle/phi/kernels/gpu/reduce_sum_grad_kernel.cu
浏览文件 @
0d878f1a
...
...
@@ -29,8 +29,40 @@ void ReduceSumGradKernel(const Context& dev_ctx,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
ReduceGradKernel
<
T
,
Context
,
kps
::
IdentityFunctor
>
(
dev_ctx
,
x
,
out_grad
,
dims
,
keep_dim
,
reduce_all
,
x_grad
);
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
auto
out_dtype
=
x
.
dtype
();
auto
*
in_x
=
&
x
;
auto
*
d_out
=
&
out_grad
;
auto
*
d_x
=
x_grad
;
// get reduce_dim and reduce_num for reduce_mean_grad
int
dim_size
=
in_x
->
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
=
funcs
::
details
::
GetReduceDim
(
dims
,
dim_size
,
reduce_all
);
auto
update_dims
=
vectorize
(
d_x
->
dims
());
int
reduce_num
=
1
;
for
(
auto
i
:
reduce_dims
)
{
reduce_num
*=
(
in_x
->
dims
())[
i
];
update_dims
[
i
]
=
1
;
}
// make new tensor
DenseTensor
new_d_out
(
d_out
->
dtype
());
new_d_out
.
ShareDataWith
(
*
d_out
);
new_d_out
.
Resize
(
phi
::
make_ddim
(
update_dims
));
dev_ctx
.
Alloc
(
d_x
,
x
.
dtype
());
auto
pt_out_dtype
=
x
.
dtype
();
auto
pt_d_out
=
new_d_out
;
auto
pt_d_x
=
*
d_x
;
std
::
vector
<
const
DenseTensor
*>
inputs
=
{
&
pt_d_out
};
std
::
vector
<
DenseTensor
*>
outputs
=
{
&
pt_d_x
};
phi
::
ReduceGrad
<
T
,
kps
::
IdentityFunctor
<
T
,
MPType
>>
(
dev_ctx
,
&
pt_d_out
,
&
pt_d_x
,
pt_out_dtype
,
kps
::
IdentityFunctor
<
T
,
MPType
>
());
}
}
// namespace phi
...
...
@@ -48,4 +80,3 @@ PD_REGISTER_KERNEL(sum_grad,
int64_t
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
paddle/phi/kernels/gpu/where_kernel.cu
浏览文件 @
0d878f1a
...
...
@@ -40,8 +40,7 @@ void WhereKernel(const Context& ctx,
ctx
.
template
Alloc
<
T
>(
out
);
CondFunctor
<
T
>
func
;
funcs
::
BroadcastKernel
<
ElementwiseType
::
kTernary
,
T
,
T
>
(
ctx
,
ins
,
&
outs
,
-
1
,
func
);
funcs
::
ElementwiseKernel
<
T
,
CondFunctor
<
T
>
,
1
>
(
ctx
,
ins
,
&
outs
,
func
);
}
}
// namespace phi
...
...
paddle/phi/kernels/kps/bitwise_kernel.cu
浏览文件 @
0d878f1a
...
...
@@ -51,9 +51,9 @@ void BitwiseNotKernel(const Context& dev_ctx,
dev_ctx
.
template
Alloc
<
T
>(
out
);
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
x
};
std
::
vector
<
DenseTensor
*>
outs
=
{
out
};
funcs
::
BitwiseNotFunctor
<
T
>
func
;
funcs
::
BroadcastKernel
<
ElementwiseType
::
kUnary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
-
1
,
func
);
funcs
::
BitwiseNotFunctor
<
T
>
unary_
func
;
funcs
::
ElementwiseKernel
<
T
,
funcs
::
BitwiseNotFunctor
<
T
>
>
(
dev_ctx
,
ins
,
&
outs
,
unary_
func
);
}
}
// namespace phi
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录