fused_gemm_epilogue_op.cu 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

16
#include "paddle/fluid/operators/fused/fused_gemm_epilogue_op.h"
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
19
#include "paddle/fluid/framework/scope_guard.h"
20
#include "paddle/fluid/platform/bfloat16.h"
21 22 23 24 25 26
#include "paddle/fluid/platform/dynload/cublasLt.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

27
using Tensor = phi::DenseTensor;
28 29 30 31 32

template <typename DeviceContext, typename T>
class FusedGemmEpilogueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
L
Leo Chen 已提交
33
    auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
34

35 36 37
    const phi::DenseTensor* x = ctx.Input<phi::DenseTensor>("X");
    const phi::DenseTensor* y = ctx.Input<phi::DenseTensor>("Y");
    const phi::DenseTensor* bias = ctx.Input<phi::DenseTensor>("Bias");
38

39 40 41
    phi::DenseTensor* out = ctx.Output<phi::DenseTensor>("Out");
    phi::DenseTensor* reserve_space =
        ctx.Output<phi::DenseTensor>("ReserveSpace");
42 43 44 45 46

    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");

    std::string activation = ctx.Attr<std::string>("activation");
47 48
    VLOG(10) << "trans_x = " << trans_x << " , trans_y = " << trans_y
             << " , activation = " << activation;
49 50
    bool enable_auxiliary = reserve_space == nullptr ? false : true;

51
    dev_ctx.Alloc<T>(out, out->numel() * sizeof(T));
52 53 54 55
    auto* out_data = out->data<T>();

    auto x_mat_dims =
        phi::flatten_to_2d(x->dims(), trans_x ? 1 : x->dims().size() - 1);
56
    // (M * K) * (K * N)
57 58 59 60 61 62 63 64 65 66
    int64_t M = trans_x ? x_mat_dims[1] : x_mat_dims[0];
    int64_t K = trans_y ? y->dims()[1] : y->dims()[0];
    int64_t N = trans_y ? y->dims()[0] : y->dims()[1];

    cudaDataType_t mat_type = CUDA_R_32F;
    cudaDataType_t scale_type = CUDA_R_32F;
    cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
    if (std::is_same<T, paddle::platform::float16>::value) {
      mat_type = CUDA_R_16F;
    }
67 68 69
    if (std::is_same<T, platform::bfloat16>::value) {
      mat_type = CUDA_R_16BF;
    }
70 71 72 73 74 75 76 77 78 79 80 81 82
    if (std::is_same<T, double>::value) {
      mat_type = CUDA_R_64F;
      scale_type = CUDA_R_64F;
      compute_type = CUBLAS_COMPUTE_64F;
    }

    cublasLtMatmulDesc_t operation_desc = NULL;
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
        &operation_desc, compute_type, scale_type));
    cublasOperation_t transx = trans_x ? CUBLAS_OP_T : CUBLAS_OP_N;
    cublasOperation_t transy = trans_y ? CUBLAS_OP_T : CUBLAS_OP_N;
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
83 84 85
            operation_desc,
            CUBLASLT_MATMUL_DESC_TRANSB,
            &transx,
86 87 88
            sizeof(transx)));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
89 90 91
            operation_desc,
            CUBLASLT_MATMUL_DESC_TRANSA,
            &transy,
92 93 94 95 96 97
            sizeof(transy)));

    cublasLtEpilogue_t epiloque_func =
        get_epilogue_type_(activation, enable_auxiliary);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
98 99 100
            operation_desc,
            CUBLASLT_MATMUL_DESC_EPILOGUE,
            &epiloque_func,
101 102 103 104
            sizeof(epiloque_func)));
    const T* bias_data = bias->data<T>();
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
105 106 107
            operation_desc,
            CUBLASLT_MATMUL_DESC_BIAS_POINTER,
            &bias_data,
108 109 110 111 112 113 114 115 116 117
            sizeof(bias_data)));

    if (enable_auxiliary && activation != "none") {
      size_t reserve_space_size = 0;
      if (activation == "relu") {
        // Count in bits.
        reserve_space_size = phi::product(out->dims()) / 8;
      } else {
        reserve_space_size = phi::product(out->dims()) * sizeof(T);
      }
118
      dev_ctx.Alloc(reserve_space, out->type(), reserve_space_size);
119 120 121 122
      void* aux_data = reinterpret_cast<void*>(reserve_space->data<T>());

      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
123 124 125 126
              operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
              &aux_data,
              sizeof(aux_data)));
127
      int64_t aux_ld = N;
128 129
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
130 131 132
              operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
              &aux_ld,
133
              sizeof(aux_ld)));
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    }

    cublasLtMatrixLayout_t x_desc = NULL, y_desc = NULL, out_desc = NULL;
    if (trans_x)
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &x_desc, mat_type, M, K, M));
    else
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &x_desc, mat_type, K, M, K));
    if (trans_y)
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &y_desc, mat_type, K, N, K));
    else
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &y_desc, mat_type, N, K, N));
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
        &out_desc, mat_type, N, M, N));

    cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
S
sneaxiy 已提交
153 154 155
    // NOTE(zengjinle): I do not know whether the 4MB workspace size is
    // "enough". I just followed the settings from the NVIDIA MLPerf BERT code.
    size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024;
156
    cudaStream_t stream = dev_ctx.stream();
L
Leo Chen 已提交
157 158 159 160
    memory::allocation::AllocationPtr workspace = memory::Alloc(
        dev_ctx.GetPlace(),
        workspace_size,
        phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
161 162 163 164 165 166 167 168 169 170 171 172

    double alpha64 = 1.0, beta64 = 0.0;
    float alpha32 = 1.0f, beta32 = 0.0f;
    void *alpha = nullptr, *beta = nullptr;
    if (std::is_same<T, double>::value) {
      alpha = &alpha64;
      beta = &beta64;
    } else {
      alpha = &alpha32;
      beta = &beta32;
    }

173 174 175
    const auto* y_data = y->data<T>();
    const auto* x_data = x->data<T>();

176 177 178 179 180 181 182 183 184 185 186 187 188
    auto algo = GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                              operation_desc,
                                                              y_desc,
                                                              x_desc,
                                                              out_desc,
                                                              alpha,
                                                              beta,
                                                              y_data,
                                                              x_data,
                                                              out_data,
                                                              stream,
                                                              workspace->ptr(),
                                                              workspace_size);
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmul(lt_handle,
                                          operation_desc,
                                          alpha,
                                          y_data,
                                          y_desc,
                                          x_data,
                                          x_desc,
                                          beta,
                                          out_data,
                                          out_desc,
                                          out_data,
                                          out_desc,
                                          algo,
                                          workspace->ptr(),
                                          workspace_size,
                                          stream));
207 208 209 210 211 212 213 214 215

    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescDestroy(operation_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(y_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(x_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(out_desc));
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  }

 private:
  static cublasLtEpilogue_t get_epilogue_type_(const std::string& activation,
                                               bool enable_auxiliary) {
    if (activation == "relu") {
      return enable_auxiliary ? CUBLASLT_EPILOGUE_RELU_AUX_BIAS
                              : CUBLASLT_EPILOGUE_RELU_BIAS;
    } else if (activation == "gelu") {
      return enable_auxiliary ? CUBLASLT_EPILOGUE_GELU_AUX_BIAS
                              : CUBLASLT_EPILOGUE_GELU_BIAS;
    } else if (activation == "none") {
      return CUBLASLT_EPILOGUE_BIAS;
    } else {
      PADDLE_ENFORCE_EQ(
231 232
          true,
          false,
233 234 235 236 237 238 239 240 241
          platform::errors::InvalidArgument(
              "The activation attribute of fused_gemm_epilogue op should be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation=%s.",
              activation));
    }
  }
};

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
enum FusedGEMMGradInType { kDX = 0, kDY = 1, kDZ = 2 };

template <bool TransX, bool TransY>
struct FusedGEMMGradTrait;

template <>
struct FusedGEMMGradTrait<false, false> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<true, false> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradATrans = false;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<false, true> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = false;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<true, true> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradATrans = true;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = true;
};

static constexpr auto BoolToCuBlasEnum(bool transpose) {
  return transpose ? CUBLAS_OP_T : CUBLAS_OP_N;
}

303 304 305 306
template <typename DeviceContext, typename T>
class FusedGemmEpilogueGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
307 308
    bool transpose_x = ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.Attr<bool>("trans_y");
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    if (transpose_x) {
      if (transpose_y) {
        ComputeImpl<true, true>(ctx);
      } else {
        ComputeImpl<true, false>(ctx);
      }
    } else {
      if (transpose_y) {
        ComputeImpl<false, true>(ctx);
      } else {
        ComputeImpl<false, false>(ctx);
      }
    }
  }

 private:
  template <bool TransX, bool TransY>
  static void ComputeImpl(const framework::ExecutionContext& ctx) {
    using Trait = FusedGEMMGradTrait<TransX, TransY>;
L
Leo Chen 已提交
329
    auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
330 331 332 333 334 335 336 337 338
    const phi::DenseTensor* dout = ctx.Input<phi::DenseTensor>("DOut");
    const phi::DenseTensor* x = ctx.Input<phi::DenseTensor>("X");
    const phi::DenseTensor* y = ctx.Input<phi::DenseTensor>("Y");
    const phi::DenseTensor* reserve_space =
        ctx.Input<phi::DenseTensor>("ReserveSpace");

    phi::DenseTensor* dx = ctx.Output<phi::DenseTensor>("DX");
    phi::DenseTensor* dy = ctx.Output<phi::DenseTensor>("DY");
    phi::DenseTensor* dbias = ctx.Output<phi::DenseTensor>("DBias");
339 340 341

    std::string activation_grad = ctx.Attr<std::string>("activation_grad");

342 343 344 345 346 347 348 349 350 351
    VLOG(10) << "trans_x = " << TransX << " , trans_y = " << TransY
             << " , activation_grad = " << activation_grad;

    auto x_mat_dims =
        phi::flatten_to_2d(x->dims(), TransX ? 1 : x->dims().size() - 1);

    // (M * K) * (K * N)
    int64_t M = TransX ? x_mat_dims[1] : x_mat_dims[0];
    int64_t K = TransY ? y->dims()[1] : y->dims()[0];
    int64_t N = TransY ? y->dims()[0] : y->dims()[1];
352

353
    VLOG(10) << "M = " << M << " , K = " << K << " , N = " << N;
354 355 356 357 358 359 360

    cudaDataType_t mat_type = CUDA_R_32F;
    cudaDataType_t scale_type = CUDA_R_32F;
    cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
    if (std::is_same<T, paddle::platform::float16>::value) {
      mat_type = CUDA_R_16F;
    }
361 362 363
    if (std::is_same<T, platform::bfloat16>::value) {
      mat_type = CUDA_R_16BF;
    }
364 365 366 367 368 369 370
    if (std::is_same<T, double>::value) {
      mat_type = CUDA_R_64F;
      scale_type = CUDA_R_64F;
      compute_type = CUBLAS_COMPUTE_64F;
    }

    cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
S
sneaxiy 已提交
371 372 373
    // NOTE(zengjinle): I do not know whether the 4MB workspace size is
    // "enough". I just followed the settings from the NVIDIA MLPerf BERT code.
    size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024;
374
    const cublasLtMatmulAlgo_t* algo = nullptr;
375 376 377 378 379 380 381 382 383 384 385 386 387
    cudaStream_t stream = dev_ctx.stream();

    double alpha64 = 1.0, beta64 = 0.0;
    float alpha32 = 1.0f, beta32 = 0.0f;
    void *alpha = nullptr, *beta = nullptr;
    if (std::is_same<T, double>::value) {
      alpha = &alpha64;
      beta = &beta64;
    } else {
      alpha = &alpha32;
      beta = &beta32;
    }

388 389 390 391 392 393 394 395
    cublasLtMatrixLayout_t dout_desc = nullptr, dout_trans_desc = nullptr;
    cublasLtMatrixLayout_t x_desc = nullptr, x_trans_desc = nullptr;
    cublasLtMatrixLayout_t y_desc = nullptr, y_trans_desc = nullptr;
    cublasLtMatrixLayout_t dx_desc = nullptr, dy_desc = nullptr;
    cublasLtMatmulDesc_t dx_operation_desc = nullptr,
                         dy_operation_desc = nullptr;

    DEFINE_PADDLE_SCOPE_GUARD([&] {
396 397 398 399 400 401 402 403
      auto descs = {dout_desc,
                    dout_trans_desc,
                    x_desc,
                    x_trans_desc,
                    y_desc,
                    y_trans_desc,
                    dx_desc,
                    dy_desc};
404 405 406 407 408 409
      for (auto desc : descs) {
        if (desc) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutDestroy(desc));
        }
      }
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
      if (dx_operation_desc) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescDestroy(dx_operation_desc));
      }

      if (dy_operation_desc) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescDestroy(dy_operation_desc));
      }
    });

    auto x_row = TransX ? K : M;
    auto x_col = TransX ? M : K;
    auto y_row = TransY ? N : K;
    auto y_col = TransY ? K : N;
    auto z_row = TransX ? N : M;
    auto z_col = TransX ? M : N;

    // dx = func(dout, y)
430
    if (dx) {
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
      constexpr auto kXGradAIsDZ = (Trait::kXGradA == FusedGEMMGradInType::kDZ);
      cublasLtMatrixLayout_t *dx_dout_desc, *dx_y_desc;

      if (TransX) {
        dx_dout_desc = &dout_trans_desc;
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatrixLayoutCreate(
                dx_dout_desc, mat_type, z_row, z_col, z_row));
      } else {
        dx_dout_desc = &dout_desc;
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatrixLayoutCreate(
                dx_dout_desc, mat_type, z_col, z_row, z_col));
      }

      dx_y_desc = &y_trans_desc;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          dx_y_desc, mat_type, y_col, y_row, y_col));

      auto& a_desc = kXGradAIsDZ ? (*dx_dout_desc) : (*dx_y_desc);
      auto& b_desc = kXGradAIsDZ ? (*dx_y_desc) : (*dx_dout_desc);
      auto a_trans = BoolToCuBlasEnum(Trait::kXGradATrans);
      auto b_trans = BoolToCuBlasEnum(Trait::kXGradBTrans);

      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &dx_desc, mat_type, x_col, x_row, x_col));

458 459 460 461
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
          &dx_operation_desc, compute_type, scale_type));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
462 463 464
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSB,
              &a_trans,
465
              sizeof(a_trans)));
466 467
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
468 469 470
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSA,
              &b_trans,
471 472
              sizeof(b_trans)));

473 474 475 476
      cublasLtEpilogue_t epiloque_func_for_dx =
          get_epilogue_type_(activation_grad);
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
477 478 479 480
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE,
              &epiloque_func_for_dx,
              sizeof(epiloque_func_for_dx)));
481 482 483 484 485

      if (activation_grad != "none") {
        auto* aux_data = reserve_space->data<T>();
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
486 487 488 489
                dx_operation_desc,
                CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
                &aux_data,
                sizeof(aux_data)));
490
        int64_t aux_ld = TransX ? M : K;
491 492
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
493 494 495 496
                dx_operation_desc,
                CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
                &aux_ld,
                sizeof(aux_ld)));
497 498
      }

L
Leo Chen 已提交
499 500 501 502
      auto dx_workspace = memory::Alloc(
          dev_ctx.GetPlace(),
          workspace_size,
          phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
503

504
      auto* dx_data = dev_ctx.Alloc<T>(dx, dx->numel() * sizeof(T));
505 506
      const auto* y_data = y->data<T>();
      const auto* dout_data = dout->data<T>();
507 508
      const auto* a_data = kXGradAIsDZ ? dout_data : y_data;
      const auto* b_data = kXGradAIsDZ ? y_data : dout_data;
509

510 511 512 513 514 515 516 517 518 519 520 521 522 523
      auto algo =
          GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                        dx_operation_desc,
                                                        b_desc,
                                                        a_desc,
                                                        dx_desc,
                                                        alpha,
                                                        beta,
                                                        b_data,
                                                        a_data,
                                                        dx_data,
                                                        stream,
                                                        dx_workspace->ptr(),
                                                        workspace_size);
524

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmul(lt_handle,
                                            dx_operation_desc,
                                            alpha,
                                            b_data,
                                            b_desc,
                                            a_data,
                                            a_desc,
                                            beta,
                                            dx_data,
                                            dx_desc,
                                            dx_data,
                                            dx_desc,
                                            algo,
                                            dx_workspace->ptr(),
                                            workspace_size,
                                            stream));
542 543
    }

544
    // dy = func(dout, x)
545
    if (dy) {
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
      constexpr auto kYGradAIsDZ = (Trait::kYGradA == FusedGEMMGradInType::kDZ);

      cublasLtMatrixLayout_t *dy_dout_desc = nullptr, *dy_x_desc = nullptr;
      if (TransX) {
        dy_dout_desc = &dout_trans_desc;
        if (dout_trans_desc == nullptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutCreate(
                  dy_dout_desc, mat_type, z_row, z_col, z_row));
        }
      } else {
        dy_dout_desc = &dout_desc;
        if (dout_desc == nullptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutCreate(
                  dy_dout_desc, mat_type, z_col, z_row, z_col));
        }
      }

      dy_x_desc = &x_trans_desc;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          dy_x_desc, mat_type, x_col, x_row, x_col));

      auto& a_desc = kYGradAIsDZ ? (*dy_dout_desc) : (*dy_x_desc);
      auto& b_desc = kYGradAIsDZ ? (*dy_x_desc) : (*dy_dout_desc);
      auto a_trans = BoolToCuBlasEnum(Trait::kYGradATrans);
      auto b_trans = BoolToCuBlasEnum(Trait::kYGradBTrans);

      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &dy_desc, mat_type, y_col, y_row, y_col));

577 578
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
          &dy_operation_desc, compute_type, scale_type));
579

580 581
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
582 583 584
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSB,
              &a_trans,
585
              sizeof(a_trans)));
586 587
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
588 589 590
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSA,
              &b_trans,
591 592 593 594 595 596 597 598 599 600 601 602 603
              sizeof(b_trans)));

      cublasLtEpilogue_t epiloque_func_for_dy;
      if (dbias == nullptr) {
        epiloque_func_for_dy = CUBLASLT_EPILOGUE_DEFAULT;
      } else {
        if (TransY) {
          epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADB;
        } else {
          epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADA;
        }
      }

604 605
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
606 607 608 609
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE,
              &epiloque_func_for_dy,
              sizeof(epiloque_func_for_dy)));
610 611

      if (dbias) {
612
        auto* dbias_data = dev_ctx.Alloc<T>(dbias, dbias->numel() * sizeof(T));
613 614
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
615 616 617 618
                dy_operation_desc,
                CUBLASLT_MATMUL_DESC_BIAS_POINTER,
                &dbias_data,
                sizeof(dbias_data)));
619 620
      }

L
Leo Chen 已提交
621 622 623 624
      auto dy_workspace = memory::Alloc(
          dev_ctx.GetPlace(),
          workspace_size,
          phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
625
      auto* dy_data = dev_ctx.Alloc<T>(dy, dy->numel() * sizeof(T));
626 627
      const auto* dout_data = dout->data<T>();
      const auto* x_data = x->data<T>();
628 629
      const auto* a_data = kYGradAIsDZ ? dout_data : x_data;
      const auto* b_data = kYGradAIsDZ ? x_data : dout_data;
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644
      auto algo =
          GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                        dy_operation_desc,
                                                        b_desc,
                                                        a_desc,
                                                        dy_desc,
                                                        alpha,
                                                        beta,
                                                        b_data,
                                                        a_data,
                                                        dy_data,
                                                        stream,
                                                        dy_workspace->ptr(),
                                                        workspace_size);
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmul(lt_handle,
                                            dy_operation_desc,
                                            alpha,
                                            b_data,
                                            b_desc,
                                            a_data,
                                            a_desc,
                                            beta,
                                            dy_data,
                                            dy_desc,
                                            dy_data,
                                            dy_desc,
                                            algo,
                                            dy_workspace->ptr(),
                                            workspace_size,
                                            stream));
663 664 665 666 667 668 669 670 671 672 673 674 675 676
    }
  }

 private:
  static cublasLtEpilogue_t get_epilogue_type_(
      const std::string& activation_grad) {
    if (activation_grad == "relu_grad") {
      return CUBLASLT_EPILOGUE_DRELU;
    } else if (activation_grad == "gelu_grad") {
      return CUBLASLT_EPILOGUE_DGELU;
    } else if (activation_grad == "none") {
      return CUBLASLT_EPILOGUE_DEFAULT;
    } else {
      PADDLE_ENFORCE_EQ(
677 678
          true,
          false,
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
          platform::errors::InvalidArgument(
              "The activation_grad attribute of fused_gemm_epilogue op should "
              "be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation_grad=%s.",
              activation_grad));
    }
  }
};

}  // namespace operators
}  // namespace paddle

#if CUDA_VERSION >= 11060
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_gemm_epilogue,
L
Leo Chen 已提交
696 697
    ops::FusedGemmEpilogueKernel<phi::GPUContext, float>,
    ops::FusedGemmEpilogueKernel<phi::GPUContext, double>,
698 699
    ops::FusedGemmEpilogueKernel<phi::GPUContext, paddle::platform::float16>,
    ops::FusedGemmEpilogueKernel<phi::GPUContext, paddle::platform::bfloat16>);
700 701 702

REGISTER_OP_CUDA_KERNEL(
    fused_gemm_epilogue_grad,
L
Leo Chen 已提交
703 704 705
    ops::FusedGemmEpilogueGradKernel<phi::GPUContext, float>,
    ops::FusedGemmEpilogueGradKernel<phi::GPUContext, double>,
    ops::FusedGemmEpilogueGradKernel<phi::GPUContext,
706 707
                                     paddle::platform::float16>,
    ops::FusedGemmEpilogueKernel<phi::GPUContext, paddle::platform::bfloat16>);
708
#endif