add_n_kernel.cu 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/add_n_kernel.h"

17 18
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
19 20
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/kernels/impl/add_n_kernel_impl.h"
21 22 23 24 25 26 27 28

namespace phi {

#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))

template <class T>
__global__ void SumArrayCUDAKernel(
    T **in, T *out, int64_t N, size_t in_size, bool read_dst) {
29
  using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
30 31
  CUDA_KERNEL_LOOP_TYPE(idx, N, int64_t) {
    MPType total(read_dst ? static_cast<MPType>(out[idx])
32
                          : static_cast<MPType>(0));
33 34 35
    for (int i = 0; i < in_size; ++i) {
      const T *tmp = in[i];
      if (tmp) {
36
        total += static_cast<MPType>(tmp[idx]);
37 38
      }
    }
39
    out[idx] = static_cast<T>(total);
40 41 42
  }
}

43 44 45 46
template <class T>
__global__ void SumSelectedRowsCUDAKernel(T **sr_in_out,
                                          int64_t N,
                                          size_t rows) {
47
  CUDA_KERNEL_LOOP_TYPE(idx, N, int64_t) {
48 49 50 51
    for (int i = 0; i < 2 * rows; i += 2) {
      const T *tmp = sr_in_out[i];
      T *tmp_out = sr_in_out[i + 1];
      if (tmp && tmp_out) {
52
        tmp_out[idx] += tmp[idx];
53 54 55 56 57
      }
    }
  }
}

58 59
template <typename T, typename Context>
void AddNKernel(const Context &dev_ctx,
60
                const std::vector<const TensorBase *> &x,
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
                DenseTensor *out) {
  const size_t in_num = x.size();

  constexpr size_t theory_sm_threads = 1024;
  auto stream = dev_ctx.stream();

  auto max_threads = dev_ctx.GetMaxPhysicalThreadCount();
  auto sm_count = max_threads / theory_sm_threads;
  size_t tile_size = 0;
  dim3 grids;
  dim3 blocks;

  auto ComputeKernelParameter = [&](size_t length) {
    if (length >= max_threads)
      tile_size = 1024;
    else if (length < max_threads && length > sm_count * 128)
      tile_size = 512;
    else if (length <= sm_count * 128)
      tile_size = 256;
    grids = dim3(CEIL_DIV(length, tile_size), 1, 1);
    blocks = dim3(tile_size, 1, 1);
  };
83 84 85 86 87 88 89
  auto *out_ptr = dev_ctx.template Alloc<T>(out);
  bool in_place = false;
  if (x.size() > 0 && x[0]->initialized() && DenseTensor::classof(x[0])) {
    if ((static_cast<const DenseTensor *>(x[0]))->data() == out->data()) {
      in_place = true;
    }
  }
90

91 92 93 94
  if (!in_place && in_num >= 1 && DenseTensor::classof(x[0])) {
    auto &in_0_tensor = *(static_cast<const DenseTensor *>(x[0]));
    if (in_0_tensor.numel() > 0) {
      in_place = (in_0_tensor.data<T>() == out_ptr);
95 96 97 98
    }
  }

  // Sum of two tensors
99 100 101
  if (in_num == 2 && DenseTensor::classof(x[0]) && DenseTensor::classof(x[1])) {
    auto &in_0 = *(static_cast<const DenseTensor *>(x[0]));
    auto &in_1 = *(static_cast<const DenseTensor *>(x[1]));
102 103
    int64_t length_0 = in_0.numel();
    int64_t length_1 = in_1.numel();
104
    if (length_0 && length_1 && in_0.IsInitialized() && in_1.IsInitialized()) {
105
      using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
106 107
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
108 109 110
      auto in_0_e = EigenVector<T>::Flatten(in_0).template cast<MPType>();
      auto in_1_e = EigenVector<T>::Flatten(in_1).template cast<MPType>();
      result.device(place) = (in_0_e + in_1_e).template cast<T>();
111
    } else if (length_0 && in_0.IsInitialized()) {
112 113 114
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_0);
115
    } else if (length_1 && in_1.IsInitialized()) {
116 117 118 119 120 121 122 123 124
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_1);
    }
    return;
  }

  int start = in_place ? 1 : 0;
  if (!in_place) {
125
    phi::funcs::SetConstant<phi::GPUContext, T> constant_functor;
126 127 128 129
    constant_functor(dev_ctx, out, static_cast<T>(0));
  }

  std::vector<const T *> in_data;
130
  std::vector<int> selectrow_index;
131 132 133
  int64_t lod_length = 0;
  bool dst_write = false;
  for (int i = start; i < in_num; ++i) {
134 135 136 137 138 139 140 141
    if (DenseTensor::classof(x[i])) {
      auto &in_i = *(static_cast<const DenseTensor *>(x[i]));
      lod_length = in_i.numel();
      if (lod_length && in_i.IsInitialized()) {
        in_data.emplace_back(in_i.data<T>());
      }
    } else if (SelectedRows::classof(x[i])) {
      selectrow_index.push_back(i);
142 143 144
    }
  }

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  // compute select rows separately.
  if (!selectrow_index.empty()) {
    std::vector<const T *> sr_in_out_data;
    size_t rows = 0;
    int64_t length = 0;
    for (auto index : selectrow_index) {
      auto &sr = *(static_cast<const SelectedRows *>(x[index]));
      auto &sr_value = sr.value();
      auto &sr_rows = sr.rows();

      auto row_numel = sr_value.numel() / sr_rows.size();
      auto out_dims = out->dims();

      PADDLE_ENFORCE_EQ(sr.height(),
                        out_dims[0],
                        errors::InvalidArgument(
                            "The table height of input must be same as output, "
                            "but received input height is %d"
                            ", output height is %d",
                            sr.height(),
                            out_dims[0]));
      PADDLE_ENFORCE_EQ(row_numel,
                        out->numel() / sr.height(),
                        errors::InvalidArgument(
                            "The table width of input must be same as output, "
                            "but received input width is %d"
                            ", output width is %d",
                            row_numel,
                            out->numel() / sr.height()));

      auto *sr_data = sr_value.data<T>();
      auto *sr_out_data = out->data<T>();
      rows += sr_rows.size();
      length = row_numel;

      for (size_t i = 0; i < sr_rows.size(); ++i) {
        sr_in_out_data.emplace_back(&sr_data[i * row_numel]);
        sr_in_out_data.emplace_back(&sr_out_data[sr_rows[i] * row_numel]);
      }
    }
    if (!sr_in_out_data.empty()) {
      auto tmp_sr_in_out_array = paddle::memory::Alloc(
          dev_ctx.GetPlace(), sr_in_out_data.size() * sizeof(T *));

      paddle::memory::Copy(dev_ctx.GetPlace(),
                           tmp_sr_in_out_array->ptr(),
                           phi::CPUPlace(),
                           reinterpret_cast<void *>(sr_in_out_data.data()),
                           sr_in_out_data.size() * sizeof(T *),
                           dev_ctx.stream());

      T **sr_in_out_array_data =
          reinterpret_cast<T **>(tmp_sr_in_out_array->ptr());

      ComputeKernelParameter(length);
      SumSelectedRowsCUDAKernel<T>
          <<<grids, blocks, 0, stream>>>(sr_in_out_array_data, length, rows);
      dst_write = true;
    }
  }
205 206
  // if indata not null, merge into one kernel call.
  if (!in_data.empty()) {
207 208
    auto tmp_in_array =
        paddle::memory::Alloc(dev_ctx.GetPlace(), in_data.size() * sizeof(T *));
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    paddle::memory::Copy(dev_ctx.GetPlace(),
                         tmp_in_array->ptr(),
                         phi::CPUPlace(),
                         reinterpret_cast<void *>(in_data.data()),
                         in_data.size() * sizeof(T *),
                         dev_ctx.stream());

    T **in_array_data = reinterpret_cast<T **>(tmp_in_array->ptr());
    ComputeKernelParameter(lod_length);
    SumArrayCUDAKernel<T><<<grids, blocks, 0, stream>>>(in_array_data,
                                                        out->data<T>(),
                                                        lod_length,
                                                        in_data.size(),
                                                        dst_write | in_place);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(add_n,
                   GPU,
                   ALL_LAYOUT,
                   phi::AddNKernel,
                   float,
                   double,
                   int,
                   phi::dtype::bfloat16,
237 238 239 240 241 242 243 244 245 246 247 248 249
                   phi::dtype::float16,
                   int64_t) {}

PD_REGISTER_KERNEL(add_n_array,
                   GPU,
                   ALL_LAYOUT,
                   phi::AddNArrayKernel,
                   float,
                   double,
                   int,
                   phi::dtype::bfloat16,
                   phi::dtype::float16,
                   int64_t) {}