add_n_kernel.cu 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/add_n_kernel.h"

17 18
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
19 20
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/kernels/impl/add_n_kernel_impl.h"
21 22 23 24 25

namespace phi {

#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))

26 27 28 29 30 31 32 33 34 35 36 37
template <class T>
__global__ void Sum2CUDAKernel(const T *in_0,
                               const T *in_1,
                               T *out,
                               int64_t N) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    out[id] = in_0[id] + in_1[id];
    id += blockDim.x * gridDim.x;
  }
}

38 39 40
template <class T>
__global__ void SumArrayCUDAKernel(
    T **in, T *out, int64_t N, size_t in_size, bool read_dst) {
41
  using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
42 43
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
44 45
    MPType total(read_dst ? static_cast<MPType>(out[id])
                          : static_cast<MPType>(0));
46 47 48
    for (int i = 0; i < in_size; ++i) {
      const T *tmp = in[i];
      if (tmp) {
49
        total += static_cast<MPType>(tmp[id]);
50 51
      }
    }
52
    out[id] = static_cast<T>(total);
53 54 55 56
    id += blockDim.x * gridDim.x;
  }
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <class T>
__global__ void SumSelectedRowsCUDAKernel(T **sr_in_out,
                                          int64_t N,
                                          size_t rows) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    for (int i = 0; i < 2 * rows; i += 2) {
      const T *tmp = sr_in_out[i];
      T *tmp_out = sr_in_out[i + 1];
      if (tmp && tmp_out) {
        tmp_out[id] += tmp[id];
      }
    }
    id += blockDim.x * gridDim.x;
  }
}

74 75
template <typename T, typename Context>
void AddNKernel(const Context &dev_ctx,
76
                const std::vector<const TensorBase *> &x,
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
                DenseTensor *out) {
  const size_t in_num = x.size();

  constexpr size_t theory_sm_threads = 1024;
  auto stream = dev_ctx.stream();

  auto max_threads = dev_ctx.GetMaxPhysicalThreadCount();
  auto sm_count = max_threads / theory_sm_threads;
  size_t tile_size = 0;
  dim3 grids;
  dim3 blocks;

  auto ComputeKernelParameter = [&](size_t length) {
    if (length >= max_threads)
      tile_size = 1024;
    else if (length < max_threads && length > sm_count * 128)
      tile_size = 512;
    else if (length <= sm_count * 128)
      tile_size = 256;
    grids = dim3(CEIL_DIV(length, tile_size), 1, 1);
    blocks = dim3(tile_size, 1, 1);
  };
99 100 101 102 103 104 105
  auto *out_ptr = dev_ctx.template Alloc<T>(out);
  bool in_place = false;
  if (x.size() > 0 && x[0]->initialized() && DenseTensor::classof(x[0])) {
    if ((static_cast<const DenseTensor *>(x[0]))->data() == out->data()) {
      in_place = true;
    }
  }
106

107 108 109 110
  if (!in_place && in_num >= 1 && DenseTensor::classof(x[0])) {
    auto &in_0_tensor = *(static_cast<const DenseTensor *>(x[0]));
    if (in_0_tensor.numel() > 0) {
      in_place = (in_0_tensor.data<T>() == out_ptr);
111 112 113 114
    }
  }

  // Sum of two tensors
115 116 117
  if (in_num == 2 && DenseTensor::classof(x[0]) && DenseTensor::classof(x[1])) {
    auto &in_0 = *(static_cast<const DenseTensor *>(x[0]));
    auto &in_1 = *(static_cast<const DenseTensor *>(x[1]));
118 119
    int64_t length_0 = in_0.numel();
    int64_t length_1 = in_1.numel();
120
    if (length_0 && length_1 && in_0.IsInitialized() && in_1.IsInitialized()) {
121
      using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
122 123
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
124 125 126
      auto in_0_e = EigenVector<T>::Flatten(in_0).template cast<MPType>();
      auto in_1_e = EigenVector<T>::Flatten(in_1).template cast<MPType>();
      result.device(place) = (in_0_e + in_1_e).template cast<T>();
127
    } else if (length_0 && in_0.IsInitialized()) {
128 129 130
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_0);
131
    } else if (length_1 && in_1.IsInitialized()) {
132 133 134 135 136 137 138 139 140
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_1);
    }
    return;
  }

  int start = in_place ? 1 : 0;
  if (!in_place) {
141
    phi::funcs::SetConstant<phi::GPUContext, T> constant_functor;
142 143 144 145
    constant_functor(dev_ctx, out, static_cast<T>(0));
  }

  std::vector<const T *> in_data;
146
  std::vector<int> selectrow_index;
147 148 149
  int64_t lod_length = 0;
  bool dst_write = false;
  for (int i = start; i < in_num; ++i) {
150 151 152 153 154 155 156 157
    if (DenseTensor::classof(x[i])) {
      auto &in_i = *(static_cast<const DenseTensor *>(x[i]));
      lod_length = in_i.numel();
      if (lod_length && in_i.IsInitialized()) {
        in_data.emplace_back(in_i.data<T>());
      }
    } else if (SelectedRows::classof(x[i])) {
      selectrow_index.push_back(i);
158 159 160
    }
  }

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  // compute select rows separately.
  if (!selectrow_index.empty()) {
    std::vector<const T *> sr_in_out_data;
    size_t rows = 0;
    int64_t length = 0;
    for (auto index : selectrow_index) {
      auto &sr = *(static_cast<const SelectedRows *>(x[index]));
      auto &sr_value = sr.value();
      auto &sr_rows = sr.rows();

      auto row_numel = sr_value.numel() / sr_rows.size();
      auto out_dims = out->dims();

      PADDLE_ENFORCE_EQ(sr.height(),
                        out_dims[0],
                        errors::InvalidArgument(
                            "The table height of input must be same as output, "
                            "but received input height is %d"
                            ", output height is %d",
                            sr.height(),
                            out_dims[0]));
      PADDLE_ENFORCE_EQ(row_numel,
                        out->numel() / sr.height(),
                        errors::InvalidArgument(
                            "The table width of input must be same as output, "
                            "but received input width is %d"
                            ", output width is %d",
                            row_numel,
                            out->numel() / sr.height()));

      auto *sr_data = sr_value.data<T>();
      auto *sr_out_data = out->data<T>();
      rows += sr_rows.size();
      length = row_numel;

      for (size_t i = 0; i < sr_rows.size(); ++i) {
        sr_in_out_data.emplace_back(&sr_data[i * row_numel]);
        sr_in_out_data.emplace_back(&sr_out_data[sr_rows[i] * row_numel]);
      }
    }
    if (!sr_in_out_data.empty()) {
      auto tmp_sr_in_out_array = paddle::memory::Alloc(
          dev_ctx.GetPlace(), sr_in_out_data.size() * sizeof(T *));

      paddle::memory::Copy(dev_ctx.GetPlace(),
                           tmp_sr_in_out_array->ptr(),
                           phi::CPUPlace(),
                           reinterpret_cast<void *>(sr_in_out_data.data()),
                           sr_in_out_data.size() * sizeof(T *),
                           dev_ctx.stream());

      T **sr_in_out_array_data =
          reinterpret_cast<T **>(tmp_sr_in_out_array->ptr());

      ComputeKernelParameter(length);
      SumSelectedRowsCUDAKernel<T>
          <<<grids, blocks, 0, stream>>>(sr_in_out_array_data, length, rows);
      dst_write = true;
    }
  }
221 222
  // if indata not null, merge into one kernel call.
  if (!in_data.empty()) {
223 224
    auto tmp_in_array =
        paddle::memory::Alloc(dev_ctx.GetPlace(), in_data.size() * sizeof(T *));
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

    paddle::memory::Copy(dev_ctx.GetPlace(),
                         tmp_in_array->ptr(),
                         phi::CPUPlace(),
                         reinterpret_cast<void *>(in_data.data()),
                         in_data.size() * sizeof(T *),
                         dev_ctx.stream());

    T **in_array_data = reinterpret_cast<T **>(tmp_in_array->ptr());
    ComputeKernelParameter(lod_length);
    SumArrayCUDAKernel<T><<<grids, blocks, 0, stream>>>(in_array_data,
                                                        out->data<T>(),
                                                        lod_length,
                                                        in_data.size(),
                                                        dst_write | in_place);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(add_n,
                   GPU,
                   ALL_LAYOUT,
                   phi::AddNKernel,
                   float,
                   double,
                   int,
                   phi::dtype::bfloat16,
253 254 255 256 257 258 259 260 261 262 263 264 265
                   phi::dtype::float16,
                   int64_t) {}

PD_REGISTER_KERNEL(add_n_array,
                   GPU,
                   ALL_LAYOUT,
                   phi::AddNArrayKernel,
                   float,
                   double,
                   int,
                   phi::dtype::bfloat16,
                   phi::dtype::float16,
                   int64_t) {}