test_profiler_statistic.py 25.3 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
import paddle.profiler as profiler


class HostPythonNode:
    def __init__(self, name, type, start_ns, end_ns, process_id, thread_id):
        self.name = name
        self.type = type
        self.start_ns = start_ns
        self.end_ns = end_ns
        self.process_id = process_id
        self.thread_id = thread_id
        self.children_node = []
        self.runtime_node = []
        self.device_node = []


class DevicePythonNode:
    def __init__(self, name, type, start_ns, end_ns, device_id, context_id,
                 stream_id):
        self.name = name
        self.type = type
        self.start_ns = start_ns
        self.end_ns = end_ns
        self.device_id = device_id
        self.context_id = context_id
        self.stream_id = stream_id


class TestProfilerStatistic(unittest.TestCase):
    def test_statistic_case1(self):
        root_node = HostPythonNode('Root Node',
                                   profiler.TracerEventType.UserDefined, 0,
                                   float('inf'), 1000, 1001)
        profilerstep_node = HostPythonNode('ProfileStep#1',
                                           profiler.TracerEventType.ProfileStep,
                                           0, 400, 1000, 1001)
54 55 56
        dataloader_node = HostPythonNode('Dataloader',
                                         profiler.TracerEventType.Dataloader, 5,
                                         15, 1000, 1001)
C
chenjian 已提交
57 58 59
        mobilenet_node = HostPythonNode(
            'MobileNet', profiler.TracerEventType.Forward, 20, 50, 1000, 1001)
        yolonet_node = HostPythonNode(
C
chenjian 已提交
60 61 62 63 64 65 66 67 68
            'Yolov3Net', profiler.TracerEventType.Forward, 50, 110, 1000, 1001)

        userdefined_node = HostPythonNode('Communication Time',
                                          profiler.TracerEventType.UserDefined,
                                          100, 110, 1000, 1001)

        communication_node = HostPythonNode(
            'Communication', profiler.TracerEventType.Communication, 105, 110,
            1000, 1001)
C
chenjian 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        backward_node = HostPythonNode('Gradient Backward',
                                       profiler.TracerEventType.Backward, 120,
                                       200, 1000, 1001)
        optimization_node = HostPythonNode(
            'Optimization', profiler.TracerEventType.Optimization, 220, 300,
            1000, 1001)
        conv2d_node = HostPythonNode(
            'conv2d', profiler.TracerEventType.Operator, 25, 40, 1000, 1001)
        sync_batch_norm_node = HostPythonNode('sync_batch_norm',
                                              profiler.TracerEventType.Operator,
                                              60, 100, 1000, 1001)
        conv2d_infer_shape = HostPythonNode(
            'conv2d::infer_shape', profiler.TracerEventType.OperatorInner, 25,
            30, 1000, 1001)
        conv2d_compute = HostPythonNode('conv2d::compute',
                                        profiler.TracerEventType.OperatorInner,
                                        30, 40, 1000, 1001)
        conv2d_launchkernel = HostPythonNode(
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 30, 35,
            1000, 1001)
        conv2d_MemCpy = HostPythonNode('AsyncMemcpy',
                                       profiler.TracerEventType.UserDefined, 35,
                                       40, 1000, 1001)
        conv2d_cudaMemCpy = HostPythonNode('cudaMemcpy',
                                           profiler.TracerEventType.CudaRuntime,
                                           35, 40, 1000, 1001)
        conv2d_kernel = DevicePythonNode(
            'conv2d_kernel', profiler.TracerEventType.Kernel, 35, 50, 0, 0, 0)
        conv2d_memcpy = DevicePythonNode(
            'conv2d_memcpy', profiler.TracerEventType.Memcpy, 50, 60, 0, 0, 0)
        sync_batch_norm_infer_shape = HostPythonNode(
            'sync_batch_norm::infer_shape',
            profiler.TracerEventType.OperatorInner, 60, 70, 1000, 1001)
        sync_batch_norm_compute = HostPythonNode(
            'sync_batch_norm::compute', profiler.TracerEventType.OperatorInner,
            80, 100, 1000, 1001)
        sync_batch_norm_launchkernel = HostPythonNode(
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 80, 90,
            1000, 1001)
        sync_batch_norm_MemCpy = HostPythonNode(
            'AsyncMemcpy', profiler.TracerEventType.UserDefined, 90, 100, 1000,
            1001)
        sync_batch_norm_cudaMemCpy = HostPythonNode(
            'cudaMemcpy', profiler.TracerEventType.CudaRuntime, 90, 100, 1000,
            1001)
        sync_batch_norm_kernel = DevicePythonNode(
            'sync_batch_norm_kernel', profiler.TracerEventType.Kernel, 95, 155,
            0, 0, 0)
        sync_batch_norm_memcpy = DevicePythonNode(
            'sync_batch_norm_memcpy', profiler.TracerEventType.Memcpy, 150, 200,
            0, 0, 1)
        root_node.children_node.append(profilerstep_node)
        profilerstep_node.children_node.extend([
            dataloader_node, mobilenet_node, yolonet_node, backward_node,
            optimization_node
        ])
        mobilenet_node.children_node.append(conv2d_node)
C
chenjian 已提交
126 127 128
        yolonet_node.children_node.extend(
            [sync_batch_norm_node, userdefined_node])
        userdefined_node.children_node.append(communication_node)
C
chenjian 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        conv2d_node.children_node.extend(
            [conv2d_infer_shape, conv2d_compute, conv2d_MemCpy])
        conv2d_compute.runtime_node.append(conv2d_launchkernel)
        conv2d_MemCpy.runtime_node.append(conv2d_cudaMemCpy)
        conv2d_launchkernel.device_node.append(conv2d_kernel)
        conv2d_cudaMemCpy.device_node.append(conv2d_memcpy)
        sync_batch_norm_node.children_node.extend([
            sync_batch_norm_infer_shape, sync_batch_norm_compute,
            sync_batch_norm_MemCpy
        ])
        sync_batch_norm_compute.runtime_node.append(
            sync_batch_norm_launchkernel)
        sync_batch_norm_MemCpy.runtime_node.append(sync_batch_norm_cudaMemCpy)
        sync_batch_norm_launchkernel.device_node.append(sync_batch_norm_kernel)
        sync_batch_norm_cudaMemCpy.device_node.append(sync_batch_norm_memcpy)
        thread_tree = {'thread1001': root_node}
        extra_info = {
            'Process Cpu Utilization': '1.02',
            'System Cpu Utilization': '0.68'
        }
        statistic_data = profiler.profiler_statistic.StatisticData(thread_tree,
                                                                   extra_info)
        time_range_summary = statistic_data.time_range_summary
        event_summary = statistic_data.event_summary

        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.ProfileStep), 400)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
159
                profiler.TracerEventType.Forward), 90)
C
chenjian 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Backward), 80)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Optimization), 80)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Operator), 55)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.OperatorInner), 45)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.CudaRuntime), 30)
        self.assertEqual(
            time_range_summary.get_gpu_range_sum(
                0, profiler.TracerEventType.Kernel), 75)
        self.assertEqual(
            time_range_summary.get_gpu_range_sum(
                0, profiler.TracerEventType.Memcpy), 60)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
C
chenjian 已提交
183 184 185 186
                profiler.TracerEventType.UserDefined), 25)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Communication), 5)
C
chenjian 已提交
187
        self.assertEqual(len(event_summary.items), 2)
C
chenjian 已提交
188
        self.assertEqual(len(event_summary.userdefined_items), 1)
189
        self.assertEqual(len(event_summary.model_perspective_items), 5)
C
chenjian 已提交
190 191
        self.assertEqual(len(event_summary.memory_manipulation_items), 1)
        self.assertEqual(event_summary.items['conv2d'].cpu_time, 15)
192
        self.assertEqual(event_summary.items['conv2d'].general_gpu_time, 25)
C
chenjian 已提交
193
        self.assertEqual(
194
            event_summary.model_perspective_items['Forward'].cpu_time, 90)
C
chenjian 已提交
195
        self.assertEqual(
196 197
            event_summary.model_perspective_items['Forward'].general_gpu_time,
            135)
C
chenjian 已提交
198
        self.assertEqual(
199 200
            event_summary.model_perspective_items['Backward'].general_gpu_time,
            0)
C
chenjian 已提交
201 202
        self.assertEqual(
            event_summary.memory_manipulation_items['AsyncMemcpy'].cpu_time, 15)
203 204
        self.assertEqual(event_summary.memory_manipulation_items['AsyncMemcpy']
                         .general_gpu_time, 60)
C
chenjian 已提交
205 206 207 208 209 210 211 212
        print(
            profiler.profiler_statistic._build_table(
                statistic_data,
                sorted_by=profiler.SortedKeys.CPUTotal,
                op_detail=True,
                thread_sep=False,
                time_unit='ms'))

C
chenjian 已提交
213 214 215 216 217 218 219 220
    def test_statistic_case2(self):
        root_node = HostPythonNode('Root Node',
                                   profiler.TracerEventType.UserDefined, 0,
                                   float('inf'), 1000, 1001)
        profilerstep_node = HostPythonNode('ProfileStep#1',
                                           profiler.TracerEventType.ProfileStep,
                                           0, 400, 1000, 1001)

221 222 223
        dataloader_node = HostPythonNode('Dataloader',
                                         profiler.TracerEventType.Dataloader, 5,
                                         15, 1000, 1001)
C
chenjian 已提交
224 225 226 227 228 229 230 231 232

        mobilenet_node = HostPythonNode(
            'MobileNet', profiler.TracerEventType.Forward, 20, 50, 1000, 1001)
        yolonet_node = HostPythonNode(
            'Yolov3Net', profiler.TracerEventType.Forward, 50, 110, 1000, 1001)

        userdefined_node = HostPythonNode('Communication Time',
                                          profiler.TracerEventType.UserDefined,
                                          100, 110, 1000, 1001)
233
        allreduce_launchkernel0 = HostPythonNode(
C
chenjian 已提交
234 235 236
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 102, 104,
            1000, 1001)

237 238
        nccl_allreduce_kernel0 = DevicePythonNode(
            'nccl_allreduce_kernel', profiler.TracerEventType.Kernel, 105, 120,
C
chenjian 已提交
239 240 241 242 243 244
            0, 0, 2)

        communication_node = HostPythonNode(
            'Communication', profiler.TracerEventType.Communication, 105, 110,
            1000, 1001)

245 246 247 248 249 250
        allreduce_op1 = HostPythonNode('allreduce_op1',
                                       profiler.TracerEventType.Operator, 105,
                                       108, 1000, 1001)
        allreduce_op1_infershape = HostPythonNode(
            'allreduce_op1::infershape', profiler.TracerEventType.OperatorInner,
            105, 106, 1000, 1001)
C
chenjian 已提交
251

252
        allreduce_launchkernel1 = HostPythonNode(
C
chenjian 已提交
253 254 255
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 106, 107,
            1000, 1001)

256 257
        nccl_allreduce_kernel1 = DevicePythonNode(
            'nccl_allreduce_kernel', profiler.TracerEventType.Kernel, 130, 150,
C
chenjian 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
            0, 0, 2)

        backward_node = HostPythonNode('Gradient Backward',
                                       profiler.TracerEventType.Backward, 120,
                                       200, 1000, 1001)
        optimization_node = HostPythonNode(
            'Optimization', profiler.TracerEventType.Optimization, 220, 300,
            1000, 1001)
        conv2d_node = HostPythonNode(
            'conv2d', profiler.TracerEventType.Operator, 25, 40, 1000, 1001)
        sync_batch_norm_node = HostPythonNode('sync_batch_norm',
                                              profiler.TracerEventType.Operator,
                                              60, 100, 1000, 1001)
        conv2d_infer_shape = HostPythonNode(
            'conv2d::infer_shape', profiler.TracerEventType.OperatorInner, 25,
            30, 1000, 1001)
        conv2d_compute = HostPythonNode('conv2d::compute',
                                        profiler.TracerEventType.OperatorInner,
                                        30, 40, 1000, 1001)
        conv2d_launchkernel = HostPythonNode(
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 30, 35,
            1000, 1001)
        conv2d_MemCpy = HostPythonNode('AsyncMemcpy',
                                       profiler.TracerEventType.UserDefined, 35,
                                       40, 1000, 1001)
        conv2d_cudaMemCpy = HostPythonNode('cudaMemcpy',
                                           profiler.TracerEventType.CudaRuntime,
                                           35, 40, 1000, 1001)
        conv2d_kernel = DevicePythonNode(
            'conv2d_kernel', profiler.TracerEventType.Kernel, 35, 50, 0, 0, 0)
        conv2d_memcpy = DevicePythonNode(
            'conv2d_memcpy', profiler.TracerEventType.Memcpy, 50, 60, 0, 0, 0)
        sync_batch_norm_infer_shape = HostPythonNode(
            'sync_batch_norm::infer_shape',
            profiler.TracerEventType.OperatorInner, 60, 70, 1000, 1001)
        sync_batch_norm_compute = HostPythonNode(
            'sync_batch_norm::compute', profiler.TracerEventType.OperatorInner,
            80, 100, 1000, 1001)
        sync_batch_norm_launchkernel = HostPythonNode(
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 80, 90,
            1000, 1001)
        sync_batch_norm_MemCpy = HostPythonNode(
            'AsyncMemcpy', profiler.TracerEventType.UserDefined, 90, 100, 1000,
            1001)
        sync_batch_norm_cudaMemCpy = HostPythonNode(
            'cudaMemcpy', profiler.TracerEventType.CudaRuntime, 90, 100, 1000,
            1001)
        sync_batch_norm_kernel = DevicePythonNode(
            'sync_batch_norm_kernel', profiler.TracerEventType.Kernel, 95, 300,
            0, 0, 0)
        sync_batch_norm_memcpy = DevicePythonNode(
            'sync_batch_norm_memcpy', profiler.TracerEventType.Memcpy, 150, 200,
            0, 0, 1)

312 313 314
        allreduce_node2 = HostPythonNode('allreduce',
                                         profiler.TracerEventType.Operator, 230,
                                         250, 1000, 1001)
C
chenjian 已提交
315

316 317
        allreduce_node2_infershape = HostPythonNode(
            'allreduce_node2::infershape',
C
chenjian 已提交
318
            profiler.TracerEventType.OperatorInner, 231, 232, 1000, 1001)
319
        allreduce_launchkernel2 = HostPythonNode(
C
chenjian 已提交
320 321 322
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 235, 240,
            1000, 1001)

323 324
        nccl_allreduce_kernel2 = DevicePythonNode(
            'nccl_allreduce_kernel', profiler.TracerEventType.Kernel, 250, 280,
C
chenjian 已提交
325 326 327 328 329 330 331 332 333 334 335
            0, 0, 2)

        root_node.children_node.append(profilerstep_node)
        profilerstep_node.children_node.extend([
            dataloader_node, mobilenet_node, yolonet_node, backward_node,
            optimization_node
        ])
        mobilenet_node.children_node.append(conv2d_node)
        yolonet_node.children_node.extend(
            [sync_batch_norm_node, userdefined_node])
        userdefined_node.children_node.append(communication_node)
336 337 338 339 340 341
        userdefined_node.runtime_node.append(allreduce_launchkernel0)
        allreduce_launchkernel0.device_node.append(nccl_allreduce_kernel0)
        communication_node.children_node.append(allreduce_op1)
        allreduce_op1.children_node.append(allreduce_op1_infershape)
        allreduce_op1.runtime_node.append(allreduce_launchkernel1)
        allreduce_launchkernel1.device_node.append(nccl_allreduce_kernel1)
C
chenjian 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
        conv2d_node.children_node.extend(
            [conv2d_infer_shape, conv2d_compute, conv2d_MemCpy])
        conv2d_compute.runtime_node.append(conv2d_launchkernel)
        conv2d_MemCpy.runtime_node.append(conv2d_cudaMemCpy)
        conv2d_launchkernel.device_node.append(conv2d_kernel)
        conv2d_cudaMemCpy.device_node.append(conv2d_memcpy)
        sync_batch_norm_node.children_node.extend([
            sync_batch_norm_infer_shape, sync_batch_norm_compute,
            sync_batch_norm_MemCpy
        ])
        sync_batch_norm_compute.runtime_node.append(
            sync_batch_norm_launchkernel)
        sync_batch_norm_MemCpy.runtime_node.append(sync_batch_norm_cudaMemCpy)
        sync_batch_norm_launchkernel.device_node.append(sync_batch_norm_kernel)
        sync_batch_norm_cudaMemCpy.device_node.append(sync_batch_norm_memcpy)
357 358 359 360
        optimization_node.children_node.append(allreduce_node2)
        allreduce_node2.children_node.append(allreduce_node2_infershape)
        allreduce_node2.runtime_node.append(allreduce_launchkernel2)
        allreduce_launchkernel2.device_node.append(nccl_allreduce_kernel2)
C
chenjian 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        thread_tree = {'thread1001': root_node}
        extra_info = {
            'Process Cpu Utilization': '1.02',
            'System Cpu Utilization': '0.68'
        }
        statistic_data = profiler.profiler_statistic.StatisticData(thread_tree,
                                                                   extra_info)
        time_range_summary = statistic_data.time_range_summary
        event_summary = statistic_data.event_summary
        distributed_summary = statistic_data.distributed_summary

        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.ProfileStep), 400)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
377
                profiler.TracerEventType.Forward), 90)
C
chenjian 已提交
378 379 380 381 382 383 384 385 386 387 388
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Backward), 80)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Optimization), 80)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Operator), 78)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
C
chenjian 已提交
389
                profiler.TracerEventType.OperatorInner), 47)
C
chenjian 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.CudaRuntime), 38)
        self.assertEqual(
            time_range_summary.get_gpu_range_sum(
                0, profiler.TracerEventType.Kernel), 220)
        self.assertEqual(
            time_range_summary.get_gpu_range_sum(
                0, profiler.TracerEventType.Memcpy), 60)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.UserDefined), 25)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Communication), 5)
        self.assertEqual(
            profiler.statistic_helper.sum_ranges(
                distributed_summary.cpu_communication_range), 25)
        self.assertEqual(
            profiler.statistic_helper.sum_ranges(
                distributed_summary.gpu_communication_range), 65)
        self.assertEqual(
            profiler.statistic_helper.sum_ranges(
                distributed_summary.communication_range), 85)
        self.assertEqual(
            profiler.statistic_helper.sum_ranges(
                distributed_summary.computation_range), 220)
        self.assertEqual(
            profiler.statistic_helper.sum_ranges(
                distributed_summary.overlap_range), 85)
        self.assertEqual(len(event_summary.items), 4)
        self.assertEqual(len(event_summary.userdefined_items), 1)
422
        self.assertEqual(len(event_summary.model_perspective_items), 5)
C
chenjian 已提交
423 424
        self.assertEqual(len(event_summary.memory_manipulation_items), 1)
        self.assertEqual(event_summary.items['conv2d'].cpu_time, 15)
425
        self.assertEqual(event_summary.items['conv2d'].general_gpu_time, 25)
C
chenjian 已提交
426
        self.assertEqual(
427
            event_summary.model_perspective_items['Forward'].cpu_time, 90)
C
chenjian 已提交
428
        self.assertEqual(
429 430
            event_summary.model_perspective_items['Forward'].general_gpu_time,
            315)
C
chenjian 已提交
431
        self.assertEqual(
432 433
            event_summary.model_perspective_items['Backward'].general_gpu_time,
            0)
C
chenjian 已提交
434 435
        self.assertEqual(
            event_summary.memory_manipulation_items['AsyncMemcpy'].cpu_time, 15)
436 437
        self.assertEqual(event_summary.memory_manipulation_items['AsyncMemcpy']
                         .general_gpu_time, 60)
C
chenjian 已提交
438 439 440 441 442 443 444 445
        print(
            profiler.profiler_statistic._build_table(
                statistic_data,
                sorted_by=profiler.SortedKeys.CPUTotal,
                op_detail=True,
                thread_sep=False,
                time_unit='ms'))

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    def test_statistic_case3(self):
        # for coverage, test all time is 0
        root_node = HostPythonNode('Root Node',
                                   profiler.TracerEventType.UserDefined, 0,
                                   float('inf'), 1000, 1001)
        profilerstep_node = HostPythonNode('ProfileStep#1',
                                           profiler.TracerEventType.ProfileStep,
                                           0, 400, 1000, 1001)
        dataloader_node = HostPythonNode('Dataloader',
                                         profiler.TracerEventType.Dataloader, 5,
                                         15, 1000, 1001)
        mobilenet_node = HostPythonNode(
            'MobileNet', profiler.TracerEventType.Forward, 20, 50, 1000, 1001)

        backward_node = HostPythonNode('Gradient Backward',
                                       profiler.TracerEventType.Backward, 120,
                                       200, 1000, 1001)
        optimization_node = HostPythonNode(
            'Optimization', profiler.TracerEventType.Optimization, 220, 300,
            1000, 1001)
        userdefined_node = HostPythonNode('Communication Time',
                                          profiler.TracerEventType.UserDefined,
                                          60, 70, 1000, 1001)

        conv2d_node = HostPythonNode(
            'conv2d', profiler.TracerEventType.Operator, 25, 25, 1000, 1001)

        conv2d_infer_shape = HostPythonNode(
            'conv2d::infer_shape', profiler.TracerEventType.OperatorInner, 25,
            25, 1000, 1001)
        conv2d_compute = HostPythonNode('conv2d::compute',
                                        profiler.TracerEventType.OperatorInner,
                                        25, 25, 1000, 1001)
        conv2d_launchkernel = HostPythonNode(
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 25, 25,
            1000, 1001)

        conv2d_kernel = DevicePythonNode(
            'conv2d_kernel', profiler.TracerEventType.Kernel, 35, 35, 0, 0, 0)
        another_kernel = DevicePythonNode(
            'void phi::funcs::VectorizedBroadcastKernel<float, float, phi::funcs::AddFunctor<float>, phi::funcs::AddFunctor<float>>()',
            profiler.TracerEventType.Kernel, 35, 35, 0, 0, 0)
        root_node.children_node.append(profilerstep_node)
        profilerstep_node.children_node.extend([
            dataloader_node, mobilenet_node, userdefined_node, backward_node,
            optimization_node
        ])
        mobilenet_node.children_node.append(conv2d_node)
        conv2d_node.children_node.extend([conv2d_infer_shape, conv2d_compute])
        conv2d_compute.runtime_node.append(conv2d_launchkernel)
        conv2d_launchkernel.device_node.append(conv2d_kernel)
        conv2d_launchkernel.device_node.append(another_kernel)
        thread_tree = {'thread1001': root_node}
        extra_info = {
            'Process Cpu Utilization': '1.02',
            'System Cpu Utilization': '0.68'
        }
        statistic_data = profiler.profiler_statistic.StatisticData(thread_tree,
                                                                   extra_info)
        time_range_summary = statistic_data.time_range_summary
        event_summary = statistic_data.event_summary

        self.assertEqual(event_summary.items['conv2d'].cpu_time, 0)
        self.assertEqual(event_summary.items['conv2d'].general_gpu_time, 0)
        self.assertEqual(event_summary.userdefined_items['Communication Time']
                         .general_gpu_time, 0)
        for sort_key in [
                profiler.SortedKeys.CPUTotal, profiler.SortedKeys.CPUMax,
                profiler.SortedKeys.CPUMin, profiler.SortedKeys.CPUAvg,
                profiler.SortedKeys.GPUTotal, profiler.SortedKeys.GPUMax,
                profiler.SortedKeys.GPUMin, profiler.SortedKeys.GPUAvg
        ]:
            print(
                profiler.profiler_statistic._build_table(
                    statistic_data,
                    sorted_by=sort_key,
                    op_detail=True,
                    thread_sep=False,
                    time_unit='ms'))

C
chenjian 已提交
526 527 528

if __name__ == '__main__':
    unittest.main()