test_profiler_statistic.py 21.1 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
import paddle.profiler as profiler


class HostPythonNode:
    def __init__(self, name, type, start_ns, end_ns, process_id, thread_id):
        self.name = name
        self.type = type
        self.start_ns = start_ns
        self.end_ns = end_ns
        self.process_id = process_id
        self.thread_id = thread_id
        self.children_node = []
        self.runtime_node = []
        self.device_node = []


class DevicePythonNode:
    def __init__(self, name, type, start_ns, end_ns, device_id, context_id,
                 stream_id):
        self.name = name
        self.type = type
        self.start_ns = start_ns
        self.end_ns = end_ns
        self.device_id = device_id
        self.context_id = context_id
        self.stream_id = stream_id


class TestProfilerStatistic(unittest.TestCase):
    def test_statistic_case1(self):
        root_node = HostPythonNode('Root Node',
                                   profiler.TracerEventType.UserDefined, 0,
                                   float('inf'), 1000, 1001)
        profilerstep_node = HostPythonNode('ProfileStep#1',
                                           profiler.TracerEventType.ProfileStep,
                                           0, 400, 1000, 1001)
        dataloader_node = HostPythonNode(
            'Dataloader', profiler.TracerEventType.Forward, 5, 15, 1000, 1001)
        mobilenet_node = HostPythonNode(
            'MobileNet', profiler.TracerEventType.Forward, 20, 50, 1000, 1001)
        yolonet_node = HostPythonNode(
C
chenjian 已提交
59 60 61 62 63 64 65 66 67
            'Yolov3Net', profiler.TracerEventType.Forward, 50, 110, 1000, 1001)

        userdefined_node = HostPythonNode('Communication Time',
                                          profiler.TracerEventType.UserDefined,
                                          100, 110, 1000, 1001)

        communication_node = HostPythonNode(
            'Communication', profiler.TracerEventType.Communication, 105, 110,
            1000, 1001)
C
chenjian 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        backward_node = HostPythonNode('Gradient Backward',
                                       profiler.TracerEventType.Backward, 120,
                                       200, 1000, 1001)
        optimization_node = HostPythonNode(
            'Optimization', profiler.TracerEventType.Optimization, 220, 300,
            1000, 1001)
        conv2d_node = HostPythonNode(
            'conv2d', profiler.TracerEventType.Operator, 25, 40, 1000, 1001)
        sync_batch_norm_node = HostPythonNode('sync_batch_norm',
                                              profiler.TracerEventType.Operator,
                                              60, 100, 1000, 1001)
        conv2d_infer_shape = HostPythonNode(
            'conv2d::infer_shape', profiler.TracerEventType.OperatorInner, 25,
            30, 1000, 1001)
        conv2d_compute = HostPythonNode('conv2d::compute',
                                        profiler.TracerEventType.OperatorInner,
                                        30, 40, 1000, 1001)
        conv2d_launchkernel = HostPythonNode(
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 30, 35,
            1000, 1001)
        conv2d_MemCpy = HostPythonNode('AsyncMemcpy',
                                       profiler.TracerEventType.UserDefined, 35,
                                       40, 1000, 1001)
        conv2d_cudaMemCpy = HostPythonNode('cudaMemcpy',
                                           profiler.TracerEventType.CudaRuntime,
                                           35, 40, 1000, 1001)
        conv2d_kernel = DevicePythonNode(
            'conv2d_kernel', profiler.TracerEventType.Kernel, 35, 50, 0, 0, 0)
        conv2d_memcpy = DevicePythonNode(
            'conv2d_memcpy', profiler.TracerEventType.Memcpy, 50, 60, 0, 0, 0)
        sync_batch_norm_infer_shape = HostPythonNode(
            'sync_batch_norm::infer_shape',
            profiler.TracerEventType.OperatorInner, 60, 70, 1000, 1001)
        sync_batch_norm_compute = HostPythonNode(
            'sync_batch_norm::compute', profiler.TracerEventType.OperatorInner,
            80, 100, 1000, 1001)
        sync_batch_norm_launchkernel = HostPythonNode(
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 80, 90,
            1000, 1001)
        sync_batch_norm_MemCpy = HostPythonNode(
            'AsyncMemcpy', profiler.TracerEventType.UserDefined, 90, 100, 1000,
            1001)
        sync_batch_norm_cudaMemCpy = HostPythonNode(
            'cudaMemcpy', profiler.TracerEventType.CudaRuntime, 90, 100, 1000,
            1001)
        sync_batch_norm_kernel = DevicePythonNode(
            'sync_batch_norm_kernel', profiler.TracerEventType.Kernel, 95, 155,
            0, 0, 0)
        sync_batch_norm_memcpy = DevicePythonNode(
            'sync_batch_norm_memcpy', profiler.TracerEventType.Memcpy, 150, 200,
            0, 0, 1)
        root_node.children_node.append(profilerstep_node)
        profilerstep_node.children_node.extend([
            dataloader_node, mobilenet_node, yolonet_node, backward_node,
            optimization_node
        ])
        mobilenet_node.children_node.append(conv2d_node)
C
chenjian 已提交
125 126 127
        yolonet_node.children_node.extend(
            [sync_batch_norm_node, userdefined_node])
        userdefined_node.children_node.append(communication_node)
C
chenjian 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        conv2d_node.children_node.extend(
            [conv2d_infer_shape, conv2d_compute, conv2d_MemCpy])
        conv2d_compute.runtime_node.append(conv2d_launchkernel)
        conv2d_MemCpy.runtime_node.append(conv2d_cudaMemCpy)
        conv2d_launchkernel.device_node.append(conv2d_kernel)
        conv2d_cudaMemCpy.device_node.append(conv2d_memcpy)
        sync_batch_norm_node.children_node.extend([
            sync_batch_norm_infer_shape, sync_batch_norm_compute,
            sync_batch_norm_MemCpy
        ])
        sync_batch_norm_compute.runtime_node.append(
            sync_batch_norm_launchkernel)
        sync_batch_norm_MemCpy.runtime_node.append(sync_batch_norm_cudaMemCpy)
        sync_batch_norm_launchkernel.device_node.append(sync_batch_norm_kernel)
        sync_batch_norm_cudaMemCpy.device_node.append(sync_batch_norm_memcpy)
        thread_tree = {'thread1001': root_node}
        extra_info = {
            'Process Cpu Utilization': '1.02',
            'System Cpu Utilization': '0.68'
        }
        statistic_data = profiler.profiler_statistic.StatisticData(thread_tree,
                                                                   extra_info)
        time_range_summary = statistic_data.time_range_summary
        event_summary = statistic_data.event_summary

        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.ProfileStep), 400)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
C
chenjian 已提交
158
                profiler.TracerEventType.Forward), 100)
C
chenjian 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Backward), 80)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Optimization), 80)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Operator), 55)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.OperatorInner), 45)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.CudaRuntime), 30)
        self.assertEqual(
            time_range_summary.get_gpu_range_sum(
                0, profiler.TracerEventType.Kernel), 75)
        self.assertEqual(
            time_range_summary.get_gpu_range_sum(
                0, profiler.TracerEventType.Memcpy), 60)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
C
chenjian 已提交
182 183 184 185
                profiler.TracerEventType.UserDefined), 25)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Communication), 5)
C
chenjian 已提交
186
        self.assertEqual(len(event_summary.items), 2)
C
chenjian 已提交
187
        self.assertEqual(len(event_summary.userdefined_items), 1)
188
        self.assertEqual(len(event_summary.model_perspective_items), 4)
C
chenjian 已提交
189 190
        self.assertEqual(len(event_summary.memory_manipulation_items), 1)
        self.assertEqual(event_summary.items['conv2d'].cpu_time, 15)
191
        self.assertEqual(event_summary.items['conv2d'].general_gpu_time, 25)
C
chenjian 已提交
192
        self.assertEqual(
C
chenjian 已提交
193
            event_summary.model_perspective_items['Forward'].cpu_time, 100)
C
chenjian 已提交
194
        self.assertEqual(
195 196
            event_summary.model_perspective_items['Forward'].general_gpu_time,
            135)
C
chenjian 已提交
197
        self.assertEqual(
198 199
            event_summary.model_perspective_items['Backward'].general_gpu_time,
            0)
C
chenjian 已提交
200 201
        self.assertEqual(
            event_summary.memory_manipulation_items['AsyncMemcpy'].cpu_time, 15)
202 203
        self.assertEqual(event_summary.memory_manipulation_items['AsyncMemcpy']
                         .general_gpu_time, 60)
C
chenjian 已提交
204 205 206 207 208 209 210 211
        print(
            profiler.profiler_statistic._build_table(
                statistic_data,
                sorted_by=profiler.SortedKeys.CPUTotal,
                op_detail=True,
                thread_sep=False,
                time_unit='ms'))

C
chenjian 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    def test_statistic_case2(self):
        root_node = HostPythonNode('Root Node',
                                   profiler.TracerEventType.UserDefined, 0,
                                   float('inf'), 1000, 1001)
        profilerstep_node = HostPythonNode('ProfileStep#1',
                                           profiler.TracerEventType.ProfileStep,
                                           0, 400, 1000, 1001)

        dataloader_node = HostPythonNode(
            'Dataloader', profiler.TracerEventType.Forward, 5, 15, 1000, 1001)

        mobilenet_node = HostPythonNode(
            'MobileNet', profiler.TracerEventType.Forward, 20, 50, 1000, 1001)
        yolonet_node = HostPythonNode(
            'Yolov3Net', profiler.TracerEventType.Forward, 50, 110, 1000, 1001)

        userdefined_node = HostPythonNode('Communication Time',
                                          profiler.TracerEventType.UserDefined,
                                          100, 110, 1000, 1001)
231
        allreduce_launchkernel0 = HostPythonNode(
C
chenjian 已提交
232 233 234
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 102, 104,
            1000, 1001)

235 236
        nccl_allreduce_kernel0 = DevicePythonNode(
            'nccl_allreduce_kernel', profiler.TracerEventType.Kernel, 105, 120,
C
chenjian 已提交
237 238 239 240 241 242
            0, 0, 2)

        communication_node = HostPythonNode(
            'Communication', profiler.TracerEventType.Communication, 105, 110,
            1000, 1001)

243 244 245 246 247 248
        allreduce_op1 = HostPythonNode('allreduce_op1',
                                       profiler.TracerEventType.Operator, 105,
                                       108, 1000, 1001)
        allreduce_op1_infershape = HostPythonNode(
            'allreduce_op1::infershape', profiler.TracerEventType.OperatorInner,
            105, 106, 1000, 1001)
C
chenjian 已提交
249

250
        allreduce_launchkernel1 = HostPythonNode(
C
chenjian 已提交
251 252 253
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 106, 107,
            1000, 1001)

254 255
        nccl_allreduce_kernel1 = DevicePythonNode(
            'nccl_allreduce_kernel', profiler.TracerEventType.Kernel, 130, 150,
C
chenjian 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
            0, 0, 2)

        backward_node = HostPythonNode('Gradient Backward',
                                       profiler.TracerEventType.Backward, 120,
                                       200, 1000, 1001)
        optimization_node = HostPythonNode(
            'Optimization', profiler.TracerEventType.Optimization, 220, 300,
            1000, 1001)
        conv2d_node = HostPythonNode(
            'conv2d', profiler.TracerEventType.Operator, 25, 40, 1000, 1001)
        sync_batch_norm_node = HostPythonNode('sync_batch_norm',
                                              profiler.TracerEventType.Operator,
                                              60, 100, 1000, 1001)
        conv2d_infer_shape = HostPythonNode(
            'conv2d::infer_shape', profiler.TracerEventType.OperatorInner, 25,
            30, 1000, 1001)
        conv2d_compute = HostPythonNode('conv2d::compute',
                                        profiler.TracerEventType.OperatorInner,
                                        30, 40, 1000, 1001)
        conv2d_launchkernel = HostPythonNode(
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 30, 35,
            1000, 1001)
        conv2d_MemCpy = HostPythonNode('AsyncMemcpy',
                                       profiler.TracerEventType.UserDefined, 35,
                                       40, 1000, 1001)
        conv2d_cudaMemCpy = HostPythonNode('cudaMemcpy',
                                           profiler.TracerEventType.CudaRuntime,
                                           35, 40, 1000, 1001)
        conv2d_kernel = DevicePythonNode(
            'conv2d_kernel', profiler.TracerEventType.Kernel, 35, 50, 0, 0, 0)
        conv2d_memcpy = DevicePythonNode(
            'conv2d_memcpy', profiler.TracerEventType.Memcpy, 50, 60, 0, 0, 0)
        sync_batch_norm_infer_shape = HostPythonNode(
            'sync_batch_norm::infer_shape',
            profiler.TracerEventType.OperatorInner, 60, 70, 1000, 1001)
        sync_batch_norm_compute = HostPythonNode(
            'sync_batch_norm::compute', profiler.TracerEventType.OperatorInner,
            80, 100, 1000, 1001)
        sync_batch_norm_launchkernel = HostPythonNode(
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 80, 90,
            1000, 1001)
        sync_batch_norm_MemCpy = HostPythonNode(
            'AsyncMemcpy', profiler.TracerEventType.UserDefined, 90, 100, 1000,
            1001)
        sync_batch_norm_cudaMemCpy = HostPythonNode(
            'cudaMemcpy', profiler.TracerEventType.CudaRuntime, 90, 100, 1000,
            1001)
        sync_batch_norm_kernel = DevicePythonNode(
            'sync_batch_norm_kernel', profiler.TracerEventType.Kernel, 95, 300,
            0, 0, 0)
        sync_batch_norm_memcpy = DevicePythonNode(
            'sync_batch_norm_memcpy', profiler.TracerEventType.Memcpy, 150, 200,
            0, 0, 1)

310 311 312
        allreduce_node2 = HostPythonNode('allreduce',
                                         profiler.TracerEventType.Operator, 230,
                                         250, 1000, 1001)
C
chenjian 已提交
313

314 315
        allreduce_node2_infershape = HostPythonNode(
            'allreduce_node2::infershape',
C
chenjian 已提交
316
            profiler.TracerEventType.OperatorInner, 231, 232, 1000, 1001)
317
        allreduce_launchkernel2 = HostPythonNode(
C
chenjian 已提交
318 319 320
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 235, 240,
            1000, 1001)

321 322
        nccl_allreduce_kernel2 = DevicePythonNode(
            'nccl_allreduce_kernel', profiler.TracerEventType.Kernel, 250, 280,
C
chenjian 已提交
323 324 325 326 327 328 329 330 331 332 333
            0, 0, 2)

        root_node.children_node.append(profilerstep_node)
        profilerstep_node.children_node.extend([
            dataloader_node, mobilenet_node, yolonet_node, backward_node,
            optimization_node
        ])
        mobilenet_node.children_node.append(conv2d_node)
        yolonet_node.children_node.extend(
            [sync_batch_norm_node, userdefined_node])
        userdefined_node.children_node.append(communication_node)
334 335 336 337 338 339
        userdefined_node.runtime_node.append(allreduce_launchkernel0)
        allreduce_launchkernel0.device_node.append(nccl_allreduce_kernel0)
        communication_node.children_node.append(allreduce_op1)
        allreduce_op1.children_node.append(allreduce_op1_infershape)
        allreduce_op1.runtime_node.append(allreduce_launchkernel1)
        allreduce_launchkernel1.device_node.append(nccl_allreduce_kernel1)
C
chenjian 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        conv2d_node.children_node.extend(
            [conv2d_infer_shape, conv2d_compute, conv2d_MemCpy])
        conv2d_compute.runtime_node.append(conv2d_launchkernel)
        conv2d_MemCpy.runtime_node.append(conv2d_cudaMemCpy)
        conv2d_launchkernel.device_node.append(conv2d_kernel)
        conv2d_cudaMemCpy.device_node.append(conv2d_memcpy)
        sync_batch_norm_node.children_node.extend([
            sync_batch_norm_infer_shape, sync_batch_norm_compute,
            sync_batch_norm_MemCpy
        ])
        sync_batch_norm_compute.runtime_node.append(
            sync_batch_norm_launchkernel)
        sync_batch_norm_MemCpy.runtime_node.append(sync_batch_norm_cudaMemCpy)
        sync_batch_norm_launchkernel.device_node.append(sync_batch_norm_kernel)
        sync_batch_norm_cudaMemCpy.device_node.append(sync_batch_norm_memcpy)
355 356 357 358
        optimization_node.children_node.append(allreduce_node2)
        allreduce_node2.children_node.append(allreduce_node2_infershape)
        allreduce_node2.runtime_node.append(allreduce_launchkernel2)
        allreduce_launchkernel2.device_node.append(nccl_allreduce_kernel2)
C
chenjian 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
        thread_tree = {'thread1001': root_node}
        extra_info = {
            'Process Cpu Utilization': '1.02',
            'System Cpu Utilization': '0.68'
        }
        statistic_data = profiler.profiler_statistic.StatisticData(thread_tree,
                                                                   extra_info)
        time_range_summary = statistic_data.time_range_summary
        event_summary = statistic_data.event_summary
        distributed_summary = statistic_data.distributed_summary

        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.ProfileStep), 400)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Forward), 100)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Backward), 80)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Optimization), 80)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Operator), 78)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
C
chenjian 已提交
387
                profiler.TracerEventType.OperatorInner), 47)
C
chenjian 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.CudaRuntime), 38)
        self.assertEqual(
            time_range_summary.get_gpu_range_sum(
                0, profiler.TracerEventType.Kernel), 220)
        self.assertEqual(
            time_range_summary.get_gpu_range_sum(
                0, profiler.TracerEventType.Memcpy), 60)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.UserDefined), 25)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Communication), 5)
        self.assertEqual(
            profiler.statistic_helper.sum_ranges(
                distributed_summary.cpu_communication_range), 25)
        self.assertEqual(
            profiler.statistic_helper.sum_ranges(
                distributed_summary.gpu_communication_range), 65)
        self.assertEqual(
            profiler.statistic_helper.sum_ranges(
                distributed_summary.communication_range), 85)
        self.assertEqual(
            profiler.statistic_helper.sum_ranges(
                distributed_summary.computation_range), 220)
        self.assertEqual(
            profiler.statistic_helper.sum_ranges(
                distributed_summary.overlap_range), 85)
        self.assertEqual(len(event_summary.items), 4)
        self.assertEqual(len(event_summary.userdefined_items), 1)
420
        self.assertEqual(len(event_summary.model_perspective_items), 4)
C
chenjian 已提交
421 422
        self.assertEqual(len(event_summary.memory_manipulation_items), 1)
        self.assertEqual(event_summary.items['conv2d'].cpu_time, 15)
423
        self.assertEqual(event_summary.items['conv2d'].general_gpu_time, 25)
C
chenjian 已提交
424 425 426
        self.assertEqual(
            event_summary.model_perspective_items['Forward'].cpu_time, 100)
        self.assertEqual(
427 428
            event_summary.model_perspective_items['Forward'].general_gpu_time,
            315)
C
chenjian 已提交
429
        self.assertEqual(
430 431
            event_summary.model_perspective_items['Backward'].general_gpu_time,
            0)
C
chenjian 已提交
432 433
        self.assertEqual(
            event_summary.memory_manipulation_items['AsyncMemcpy'].cpu_time, 15)
434 435
        self.assertEqual(event_summary.memory_manipulation_items['AsyncMemcpy']
                         .general_gpu_time, 60)
C
chenjian 已提交
436 437 438 439 440 441 442 443
        print(
            profiler.profiler_statistic._build_table(
                statistic_data,
                sorted_by=profiler.SortedKeys.CPUTotal,
                op_detail=True,
                thread_sep=False,
                time_unit='ms'))

C
chenjian 已提交
444 445 446

if __name__ == '__main__':
    unittest.main()