warpctc_grad_kernel_impl.h 3.0 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <vector>

#include "paddle/fluid/operators/math/sequence_padding.h"
#include "paddle/fluid/operators/math/sequence_scale.h"
#include "paddle/phi/backends/dynload/warpctc.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/utils/optional.h"

namespace phi {

template <typename T, typename Context>
void WarpctcGradKernel(const Context& dev_ctx,
                       const DenseTensor& warpctc_grad,
                       const DenseTensor& logits,
                       const DenseTensor& loss_grad,
35
                       const paddle::optional<DenseTensor>& logits_length,
0
0x45f 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
                       int blank,
                       bool norm_by_times,
                       DenseTensor* logits_grad) {
  dev_ctx.template Alloc<T>(logits_grad);

  if (logits_length.is_initialized()) {
    int max_seq_length = warpctc_grad.dims()[0];  // Tmax
    int num_sequences = warpctc_grad.dims()[1];   // B
    int seq_width = warpctc_grad.dims()[2];       // D

    // B
    auto logits_len_e = EigenTensor<int64_t, 1>::From(*logits_length);
    // (B, 1)
    auto loss_grad_e = EigenTensor<T, 2>::From(loss_grad);
    // (T, B, D)
    auto warpctc_grad_e = EigenTensor<T, 3>::From(warpctc_grad);

    auto logits_grad_e = EigenTensor<T, 3>::From(*logits_grad);

    Eigen::DSizes<int, 3> grad_shape(1, num_sequences, 1);
    Eigen::DSizes<int, 3> bcast(max_seq_length, 1, seq_width);
    auto logits_g = warpctc_grad_e *
                    loss_grad_e.reshape(grad_shape).broadcast(bcast).eval();

    auto* place = dev_ctx.eigen_device();
    if (norm_by_times) {
      auto scales = logits_len_e.cast<T>()
                        .inverse()
                        .reshape(grad_shape)
                        .broadcast(bcast)
                        .eval();
      logits_grad_e.device(*place) = logits_g * scales;
    } else {
      logits_grad_e.device(*place) = logits_g;
    }
  } else {
    paddle::operators::math::UnpaddingLoDTensorFunctor<Context, T>()(
        dev_ctx,
        warpctc_grad,
        logits_grad,
        -1,
        0,
        norm_by_times,
        paddle::operators::math::kLengthBatchWidth);

    const T* loss_grad_data = loss_grad.data<T>();
    paddle::operators::math::ScaleLoDTensorFunctor<Context, T>()(
        dev_ctx, loss_grad_data, logits_grad);
  }
}

}  // namespace phi