// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "paddle/fluid/operators/math/sequence_padding.h" #include "paddle/fluid/operators/math/sequence_scale.h" #include "paddle/phi/backends/dynload/warpctc.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/kernels/empty_kernel.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/utils/optional.h" namespace phi { template void WarpctcGradKernel(const Context& dev_ctx, const DenseTensor& warpctc_grad, const DenseTensor& logits, const DenseTensor& loss_grad, const paddle::optional& logits_length, int blank, bool norm_by_times, DenseTensor* logits_grad) { dev_ctx.template Alloc(logits_grad); if (logits_length.is_initialized()) { int max_seq_length = warpctc_grad.dims()[0]; // Tmax int num_sequences = warpctc_grad.dims()[1]; // B int seq_width = warpctc_grad.dims()[2]; // D // B auto logits_len_e = EigenTensor::From(*logits_length); // (B, 1) auto loss_grad_e = EigenTensor::From(loss_grad); // (T, B, D) auto warpctc_grad_e = EigenTensor::From(warpctc_grad); auto logits_grad_e = EigenTensor::From(*logits_grad); Eigen::DSizes grad_shape(1, num_sequences, 1); Eigen::DSizes bcast(max_seq_length, 1, seq_width); auto logits_g = warpctc_grad_e * loss_grad_e.reshape(grad_shape).broadcast(bcast).eval(); auto* place = dev_ctx.eigen_device(); if (norm_by_times) { auto scales = logits_len_e.cast() .inverse() .reshape(grad_shape) .broadcast(bcast) .eval(); logits_grad_e.device(*place) = logits_g * scales; } else { logits_grad_e.device(*place) = logits_g; } } else { paddle::operators::math::UnpaddingLoDTensorFunctor()( dev_ctx, warpctc_grad, logits_grad, -1, 0, norm_by_times, paddle::operators::math::kLengthBatchWidth); const T* loss_grad_data = loss_grad.data(); paddle::operators::math::ScaleLoDTensorFunctor()( dev_ctx, loss_grad_data, logits_grad); } } } // namespace phi