eigvals_kernel.cc 8.6 KB
Newer Older
R
Ruibiao Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/eigvals_kernel.h"

17 18
#include "glog/logging.h"

R
Ruibiao Chen 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/utils/data_type.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/for_range.h"
#include "paddle/phi/kernels/funcs/lapack/lapack_function.h"

namespace phi {

template <typename T, typename enable = void>
struct PaddleComplex;

template <typename T>
struct PaddleComplex<
    T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  using type = dtype::complex<T>;
};

template <typename T>
struct PaddleComplex<
    T,
    typename std::enable_if<
        std::is_same<T, dtype::complex<float>>::value ||
        std::is_same<T, dtype::complex<double>>::value>::type> {
  using type = T;
};

template <typename T>
using PaddleCType = typename PaddleComplex<T>::type;
template <typename T>
using Real = typename dtype::Real<T>;

inline void CheckLapackEigResult(const int info, const std::string& name) {
  PADDLE_ENFORCE_LE(
      info,
      0,
      errors::PreconditionNotMet("The QR algorithm failed to compute all the "
                                 "eigenvalues in function %s.",
                                 name.c_str()));
  PADDLE_ENFORCE_GE(
      info,
      0,
      errors::InvalidArgument(
          "The %d-th argument has an illegal value in function %s.",
          -info,
          name.c_str()));
}

template <typename T, typename Context>
typename std::enable_if<std::is_floating_point<T>::value>::type LapackEigvals(
    const Context& ctx,
    const DenseTensor& input,
    DenseTensor* output,
    DenseTensor* work,
    DenseTensor* rwork /*unused*/) {
  DenseTensor a;  // will be overwritten when lapackEig exit
  Copy(ctx, input, input.place(), /*blocking=*/true, &a);

  DenseTensor w;
  int64_t n_dim = input.dims()[1];
  w.Resize(make_ddim({n_dim << 1}));
  T* w_data = ctx.template Alloc<T>(&w);

  int64_t work_mem = work->memory_size();
  int64_t required_work_mem = 3 * n_dim * sizeof(T);
  PADDLE_ENFORCE_GE(
      work_mem,
      3 * n_dim * sizeof(T),
      errors::InvalidArgument(
          "The memory size of the work tensor in LapackEigvals function "
          "should be at least %" PRId64 " bytes, "
          "but received work\'s memory size = %" PRId64 " bytes.",
          required_work_mem,
          work_mem));

  int info = 0;
  phi::funcs::lapackEig<T>('N',
                           'N',
                           static_cast<int>(n_dim),
                           a.template data<T>(),
                           static_cast<int>(n_dim),
                           w_data,
                           NULL,
                           1,
                           NULL,
                           1,
                           work->template data<T>(),
                           static_cast<int>(work_mem / sizeof(T)),
                           static_cast<T*>(NULL),
                           &info);

  std::string name = "phi::backend::dynload::dgeev_";
  if (input.dtype() == DataType::FLOAT64) {
    name = "phi::backend::dynload::sgeev_";
  }
  CheckLapackEigResult(info, name);

  funcs::ForRange<Context> for_range(ctx, n_dim);
  funcs::RealImagToComplexFunctor<PaddleCType<T>> functor(
      w_data, w_data + n_dim, output->template data<PaddleCType<T>>(), n_dim);
  for_range(functor);
}

template <typename T, typename Context>
typename std::enable_if<std::is_same<T, dtype::complex<float>>::value ||
                        std::is_same<T, dtype::complex<double>>::value>::type
LapackEigvals(const Context& ctx,
              const DenseTensor& input,
              DenseTensor* output,
              DenseTensor* work,
              DenseTensor* rwork) {
  DenseTensor a;  // will be overwritten when lapackEig exit
  Copy(ctx, input, input.place(), /*blocking=*/true, &a);

  int64_t work_mem = work->memory_size();
  int64_t n_dim = input.dims()[1];
  int64_t required_work_mem = 3 * n_dim * sizeof(T);
  PADDLE_ENFORCE_GE(
      work_mem,
      3 * n_dim * sizeof(T),
      errors::InvalidArgument(
          "The memory size of the work tensor in LapackEigvals function "
          "should be at least %" PRId64 " bytes, "
          "but received work\'s memory size = %" PRId64 " bytes.",
          required_work_mem,
          work_mem));

  int64_t rwork_mem = rwork->memory_size();
  int64_t required_rwork_mem = (n_dim << 1) * sizeof(dtype::Real<T>);
  PADDLE_ENFORCE_GE(
      rwork_mem,
      required_rwork_mem,
      errors::InvalidArgument(
          "The memory size of the rwork tensor in LapackEigvals function "
          "should be at least %" PRId64 " bytes, "
          "but received rwork\'s memory size = %" PRId64 " bytes.",
          required_rwork_mem,
          rwork_mem));

  int info = 0;
  phi::funcs::lapackEig<T, dtype::Real<T>>(
      'N',
      'N',
      static_cast<int>(n_dim),
      a.template data<T>(),
      static_cast<int>(n_dim),
      output->template data<T>(),
      NULL,
      1,
      NULL,
      1,
      work->template data<T>(),
      static_cast<int>(work_mem / sizeof(T)),
      rwork->template data<dtype::Real<T>>(),
      &info);

  std::string name = "phi::backend::dynload::cgeev_";
  if (input.dtype() == DataType::COMPLEX128) {
    name = "phi::backend::dynload::zgeev_";
  }
  CheckLapackEigResult(info, name);
}

void SpiltBatchSquareMatrix(const DenseTensor& input,
                            std::vector<DenseTensor>* output) {
  DDim input_dims = input.dims();
  int last_dim = input_dims.size() - 1;
  int n_dim = input_dims[last_dim];

  DDim flattened_input_dims, flattened_output_dims;
  if (input_dims.size() > 2) {
    flattened_input_dims =
        phi::flatten_to_3d(input_dims, last_dim - 1, last_dim);
  } else {
    flattened_input_dims = phi::make_ddim({1, n_dim, n_dim});
  }

  DenseTensor flattened_input;
  flattened_input.ShareDataWith(input);
  flattened_input.Resize(flattened_input_dims);
  (*output) = flattened_input.Split(1, 0);
}

template <typename T, typename Context>
void EigvalsKernel(const Context& ctx, const DenseTensor& x, DenseTensor* out) {
  ctx.template Alloc<PaddleCType<T>>(out);

  std::vector<DenseTensor> x_matrices;
  SpiltBatchSquareMatrix(x, /*->*/ &x_matrices);

  int64_t n_dim = x_matrices[0].dims()[1];
  int64_t n_batch = x_matrices.size();
  DDim out_dims = out->dims();
  out->Resize(make_ddim({n_batch, n_dim}));
  std::vector<DenseTensor> out_vectors = out->Split(1, 0);

  // query workspace size
  T qwork;
  int info;
  funcs::lapackEig<T, dtype::Real<T>>('N',
                                      'N',
                                      static_cast<int>(n_dim),
                                      x_matrices[0].template data<T>(),
                                      static_cast<int>(n_dim),
                                      NULL,
                                      NULL,
                                      1,
                                      NULL,
                                      1,
                                      &qwork,
                                      -1,
                                      static_cast<dtype::Real<T>*>(NULL),
                                      &info);
  int64_t lwork = static_cast<int64_t>(qwork);

  DenseTensor work, rwork;

  work.Resize(make_ddim({lwork}));
  ctx.template Alloc<T>(&work);

  if (IsComplexType(x.dtype())) {
    rwork.Resize(make_ddim({n_dim << 1}));
    ctx.template Alloc<dtype::Real<T>>(&rwork);
  }

  for (int64_t i = 0; i < n_batch; ++i) {
    LapackEigvals<T, Context>(
        ctx, x_matrices[i], &out_vectors[i], &work, &rwork);
  }
  out->Resize(out_dims);
}

}  // namespace phi

PD_REGISTER_KERNEL(eigvals,
                   CPU,
                   ALL_LAYOUT,
                   phi::EigvalsKernel,
                   float,
                   double,
                   phi::dtype::complex<float>,
262
                   phi::dtype::complex<double>) {
263
  kernel->OutputAt(0).SetDataType(phi::dtype::ToComplex(kernel_key.dtype()));
264
}