eager_py_layer.cc 25.6 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>
13 14 15 16
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
W
wanghuancoder 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

#include <set>
#include <string>
#include <vector>

#pragma GCC diagnostic ignored "-Wattributes"
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/pylayer/py_layer_node.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "pybind11/detail/internals.h"
39
#include "pybind11/pytypes.h"
40 41
#pragma GCC diagnostic ignored "-Wwrite-strings"
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
W
wanghuancoder 已提交
42 43 44 45 46 47 48 49 50

namespace paddle {
namespace pybind {

namespace py = ::pybind11;

PyTypeObject* p_pylayer_type;
extern PyTypeObject* p_tensor_type;

51 52
std::set<paddle::Tensor*> GetTensorsFromPyObject(PyObject* obj) {
  std::set<paddle::Tensor*> result;
W
wanghuancoder 已提交
53 54 55
  if (obj == nullptr) {
    return result;
  }
56
  if (PyCheckTensor(obj)) {
W
wanghuancoder 已提交
57 58 59 60
    result.insert(&reinterpret_cast<TensorObject*>(obj)->tensor);  // NOLINT
  } else if (PyList_Check(obj)) {
    Py_ssize_t len = PyList_Size(obj);
    for (Py_ssize_t i = 0; i < len; i++) {
61
      if (PyCheckTensor(PyList_GetItem(obj, i))) {
W
wanghuancoder 已提交
62 63 64 65 66 67 68 69
        result.insert(
            &reinterpret_cast<TensorObject*>(PyList_GetItem(obj, i))  // NOLINT
                 ->tensor);
      }
    }
  } else if (PyTuple_Check(obj)) {
    Py_ssize_t len = PyTuple_Size(obj);
    for (Py_ssize_t i = 0; i < len; i++) {
70
      if (PyCheckTensor(PyTuple_GetItem(obj, i))) {
W
wanghuancoder 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84
        result.insert(
            &reinterpret_cast<TensorObject*>(PyTuple_GetItem(obj, i))  // NOLINT
                 ->tensor);
      }
    }
  }
  return result;
}

PyObject* PyLayerNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
    auto v = reinterpret_cast<PyLayerObject*>(obj);
    v->materialize_grads = true;
85
    v->container_be_packed = false;
W
wanghuancoder 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99
    new (&v->grad_node) std::weak_ptr<egr::GradNodePyLayer>();
    new (&v->forward_input_tensor_is_duplicable) std::vector<bool>();
    new (&v->forward_output_tensor_is_duplicable) std::vector<bool>();
  }
  return obj;
}

static void PyLayerDealloc(PyLayerObject* self) {
  if (self->container) {
    Py_DECREF(self->container);
  }
  if (self->non_differentiable) {
    Py_DECREF(self->non_differentiable);
  }
100 101
  if (self->not_inplace_tensors) {
    Py_DECREF(self->not_inplace_tensors);
W
wanghuancoder 已提交
102 103
  }
  self->grad_node.~weak_ptr<egr::GradNodePyLayer>();
104
  self->unpack_hook = nullptr;
W
wanghuancoder 已提交
105 106 107 108 109 110 111 112 113 114 115 116
  self->forward_input_tensor_is_duplicable.~vector();
  self->forward_output_tensor_is_duplicable.~vector();
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

PyObject* pylayer_method_name(PyObject* self, PyObject* noargs) {
  EAGER_TRY
  return ToPyObject(
      reinterpret_cast<PyLayerObject*>(self)->grad_node.lock()->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

117
PyObject* new_tensor_with_impl(paddle::Tensor* tensor) {
118 119 120
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
  if (obj) {
    auto v = reinterpret_cast<TensorObject*>(obj);
121
    new (&(v->tensor)) paddle::Tensor();
122 123 124 125 126 127 128 129 130
    v->tensor.set_impl(tensor->impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }
  return obj;
}

131 132
PyObject* pylayer_method_apply(PyObject* cls,
                               PyObject* args,
W
wanghuancoder 已提交
133 134 135 136 137 138 139
                               PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Begin run PyLayer apply...";
  PyObject* backward_function =
      PyObject_GetAttrString(cls, "_backward_function");
  if (!backward_function) {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
C
co63oc 已提交
140
        "Get _backward_function failed."));
W
wanghuancoder 已提交
141 142 143 144
  }
  PyLayerObject* ctx = reinterpret_cast<PyLayerObject*>(
      PyObject_CallFunctionObjArgs(backward_function, nullptr));
  if (!ctx) {
145 146
    PADDLE_THROW(paddle::platform::errors::External(
        pybind11::detail::error_string().c_str()));
W
wanghuancoder 已提交
147 148 149 150 151 152 153
    return nullptr;
  }
  VLOG(6) << "PyLayer construct PyLayerContext finish...";

  bool require_any_grad = false;

  size_t inputs_size = 0;
154 155
  size_t args_size = 0;
  size_t kwargs_size = 0;
W
wanghuancoder 已提交
156 157 158
  PyObject* forward_args = nullptr;
  PyObject* kwargs_value_list = nullptr;
  if (kwargs) {
159
    kwargs_size = PyDict_Size(kwargs);
W
wanghuancoder 已提交
160 161
    kwargs_value_list = PyDict_Values(kwargs);
  }
162 163 164 165 166
  if (args) {
    args_size = PyTuple_GET_SIZE(args);
  }
  inputs_size = kwargs_size + args_size;
  forward_args = PyTuple_New(args_size + 1);
W
wanghuancoder 已提交
167 168 169 170 171
  Py_INCREF(ctx);
  PyTuple_SET_ITEM(forward_args, 0, reinterpret_cast<PyObject*>(ctx));

  std::vector<std::vector<egr::AutogradMeta*>> inputs_autograd_meta;
  inputs_autograd_meta.reserve(inputs_size);
172
  std::vector<std::vector<paddle::Tensor*>> inputs_tensor;
W
wanghuancoder 已提交
173 174 175
  inputs_tensor.reserve(inputs_size);
  ctx->forward_input_tensor_is_duplicable.clear();
  ctx->forward_input_tensor_is_duplicable.reserve(inputs_size);
176
  std::set<phi::TensorBase*> input_tensorbases;
W
wanghuancoder 已提交
177 178
  for (size_t i = 0; i < inputs_size; i++) {
    PyObject* obj = nullptr;
179 180
    if (i >= args_size) {
      obj = PyList_GetItem(kwargs_value_list, i - args_size);
W
wanghuancoder 已提交
181 182 183
    } else {
      obj = PyTuple_GET_ITEM(args, i);
    }
184
    if (PyCheckTensor(obj)) {
185 186
      input_tensorbases.insert(
          reinterpret_cast<TensorObject*>(obj)->tensor.impl().get());
W
wanghuancoder 已提交
187 188 189 190 191 192 193 194 195 196 197 198
      auto autograd_meta = egr::EagerUtils::nullable_autograd_meta(
          reinterpret_cast<TensorObject*>(obj)->tensor);
      inputs_autograd_meta.push_back({autograd_meta});
      inputs_tensor.push_back(
          {&(reinterpret_cast<TensorObject*>(obj)->tensor)});  // NOLINT
      bool stop_gradient =
          autograd_meta == nullptr ? true : autograd_meta->StopGradient();
      if (!stop_gradient) {
        require_any_grad = true;
      }
      ctx->forward_input_tensor_is_duplicable.push_back(false);
    } else if (PyList_Check(obj)) {
199
      std::vector<paddle::Tensor*> tensors;
W
wanghuancoder 已提交
200
      Py_ssize_t len = PyList_Size(obj);
201 202
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
203
        if (PyCheckTensor(o)) {
204 205 206
          input_tensorbases.insert(
              reinterpret_cast<TensorObject*>(o)->tensor.impl().get());
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
W
wanghuancoder 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        }
      }
      if (!tensors.empty()) {
        auto autograd_meta = egr::EagerUtils::nullable_autograd_meta(tensors);
        for (auto iter : autograd_meta) {
          bool stop_gradient = iter == nullptr ? true : iter->StopGradient();
          if (!stop_gradient) {
            require_any_grad = true;
          }
        }
        inputs_autograd_meta.push_back(autograd_meta);
        inputs_tensor.push_back(tensors);
        ctx->forward_input_tensor_is_duplicable.push_back(true);
      }
    } else if (PyTuple_Check(obj)) {
222
      std::vector<paddle::Tensor*> tensors;
W
wanghuancoder 已提交
223
      Py_ssize_t len = PyTuple_Size(obj);
224 225
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
226
        if (PyCheckTensor(o)) {
227 228 229
          input_tensorbases.insert(
              reinterpret_cast<TensorObject*>(o)->tensor.impl().get());
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
W
wanghuancoder 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        }
      }
      if (!tensors.empty()) {
        auto autograd_meta = egr::EagerUtils::nullable_autograd_meta(tensors);
        for (auto iter : autograd_meta) {
          bool stop_gradient = iter == nullptr ? true : iter->StopGradient();
          if (!stop_gradient) {
            require_any_grad = true;
          }
        }
        inputs_autograd_meta.push_back(autograd_meta);
        inputs_tensor.push_back(tensors);
        ctx->forward_input_tensor_is_duplicable.push_back(true);
      }
    }

246
    if (i < args_size) {
W
wanghuancoder 已提交
247 248 249 250 251 252 253 254 255 256 257
      Py_INCREF(obj);
      PyTuple_SET_ITEM(forward_args, i + 1, obj);
    }
  }

  VLOG(6)
      << "PyLayer forward args is ready, begin call user's forward function...";
  // call forward
  auto forward_fn = PyObject_GetAttrString(cls, "forward");
  if (!forward_fn) {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
C
co63oc 已提交
258
        "Get forward function failed."));
W
wanghuancoder 已提交
259 260 261 262 263 264
  }
  bool trace_backward = egr::Controller::Instance().HasGrad();
  egr::Controller::Instance().SetHasGrad(false);
  auto outputs = PyObject_Call(forward_fn, forward_args, kwargs);
  egr::Controller::Instance().SetHasGrad(trace_backward);
  if (!outputs) {
265 266 267 268
    Py_XDECREF(forward_args);
    Py_XDECREF(kwargs_value_list);
    Py_XDECREF(backward_function);
    Py_XDECREF(forward_fn);
W
wanghuancoder 已提交
269 270 271 272 273 274
    return nullptr;
  }

  PyObject* outputs_tuple = nullptr;
  if (PyTuple_Check(outputs)) {
    outputs_tuple = outputs;
275 276
  } else if (PyList_Check(outputs)) {
    outputs_tuple = PyList_AsTuple(outputs);
W
wanghuancoder 已提交
277 278 279 280 281 282
  } else {
    outputs_tuple = PyTuple_New(1);
    Py_INCREF(outputs);
    PyTuple_SET_ITEM(outputs_tuple, 0, outputs);
  }

283
  std::set<paddle::Tensor*> inplace_tensors;
284 285 286 287 288 289
  std::set<phi::TensorBase*> not_inplace_tensorbases;
  auto not_inplace_tensors = GetTensorsFromPyObject(ctx->not_inplace_tensors);
  for (auto it : not_inplace_tensors) {
    not_inplace_tensorbases.insert(it->impl().get());
  }

W
wanghuancoder 已提交
290
  auto outputs_size = PyTuple_GET_SIZE(outputs_tuple);
291
  std::vector<std::vector<paddle::Tensor*>> outputs_tensor;
W
wanghuancoder 已提交
292 293 294 295 296 297 298
  outputs_tensor.reserve(outputs_size);
  std::vector<std::vector<egr::AutogradMeta*>> outputs_autograd_meta;
  outputs_autograd_meta.reserve(outputs_size);
  ctx->forward_output_tensor_is_duplicable.clear();
  ctx->forward_output_tensor_is_duplicable.reserve(outputs_size);
  for (Py_ssize_t i = 0; i < outputs_size; i++) {
    PyObject* obj = PyTuple_GET_ITEM(outputs_tuple, i);
299
    if (PyCheckTensor(obj)) {
W
wanghuancoder 已提交
300 301 302 303 304
      outputs_tensor.push_back(
          {&(reinterpret_cast<TensorObject*>(obj)->tensor)});
      outputs_autograd_meta.push_back({egr::EagerUtils::autograd_meta(
          &(reinterpret_cast<TensorObject*>(obj)->tensor))});
      ctx->forward_output_tensor_is_duplicable.push_back(false);
305 306 307 308 309 310 311 312 313 314 315 316 317
      if (input_tensorbases.count(
              reinterpret_cast<TensorObject*>(obj)->tensor.impl().get())) {
        if (not_inplace_tensorbases.count(
                reinterpret_cast<TensorObject*>(obj)->tensor.impl().get())) {
          PyTuple_SET_ITEM(outputs_tuple,
                           i,
                           new_tensor_with_impl(&(
                               reinterpret_cast<TensorObject*>(obj)->tensor)));
        } else {
          inplace_tensors.insert(
              &(reinterpret_cast<TensorObject*>(obj)->tensor));
        }
      }
W
wanghuancoder 已提交
318
    } else if (PyList_Check(obj)) {
319
      std::vector<paddle::Tensor*> tensors;
W
wanghuancoder 已提交
320
      Py_ssize_t len = PyList_Size(obj);
321 322
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
323
        if (PyCheckTensor(o)) {
324 325 326 327 328 329 330 331 332 333 334 335 336 337
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
          if (input_tensorbases.count(
                  reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
            if (not_inplace_tensorbases.count(
                    reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
              PyTuple_SetItem(obj,
                              j,
                              new_tensor_with_impl(&(
                                  reinterpret_cast<TensorObject*>(o)->tensor)));
            } else {
              inplace_tensors.insert(
                  &(reinterpret_cast<TensorObject*>(o)->tensor));
            }
          }
W
wanghuancoder 已提交
338 339 340 341 342 343 344 345 346
        }
      }
      if (!tensors.empty()) {
        outputs_tensor.push_back(tensors);
        outputs_autograd_meta.push_back(
            egr::EagerUtils::autograd_meta(&tensors));
        ctx->forward_output_tensor_is_duplicable.push_back(true);
      }
    } else if (PyTuple_Check(obj)) {
347
      std::vector<paddle::Tensor*> tensors;
W
wanghuancoder 已提交
348
      Py_ssize_t len = PyTuple_Size(obj);
349 350
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
351
        if (PyCheckTensor(o)) {
352 353 354 355 356 357 358 359 360 361 362 363 364 365
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
          if (input_tensorbases.count(
                  reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
            if (not_inplace_tensorbases.count(
                    reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
              PyTuple_SetItem(obj,
                              j,
                              new_tensor_with_impl(&(
                                  reinterpret_cast<TensorObject*>(o)->tensor)));
            } else {
              inplace_tensors.insert(
                  &(reinterpret_cast<TensorObject*>(o)->tensor));
            }
          }
W
wanghuancoder 已提交
366 367 368 369 370 371 372 373 374 375 376
        }
      }
      if (!tensors.empty()) {
        outputs_tensor.push_back(tensors);
        outputs_autograd_meta.push_back(
            egr::EagerUtils::autograd_meta(&tensors));
        ctx->forward_output_tensor_is_duplicable.push_back(true);
      }
    }
  }

377
  if (outputs_tensor.empty()) {
W
wanghuancoder 已提交
378 379 380 381 382 383
    PADDLE_THROW(platform::errors::InvalidArgument(
        "At least one output of `PyLayer.forward` is a `Tensor`."));
  }
  VLOG(6) << "PyLayer forward function finish...";

  if (require_any_grad && trace_backward) {
384
    auto non_differentiable = GetTensorsFromPyObject(ctx->non_differentiable);
W
wanghuancoder 已提交
385 386 387 388 389 390
    for (size_t i = 0; i < outputs_autograd_meta.size(); i++) {
      for (size_t j = 0; j < outputs_autograd_meta[i].size(); j++) {
        if (non_differentiable.find(outputs_tensor[i][j]) !=
            non_differentiable.end()) {
          outputs_autograd_meta[i][j]->SetStopGradient(true);
        } else {
391
          outputs_autograd_meta[i][j]->SetStopGradient(false);
W
wanghuancoder 已提交
392 393 394 395
        }
      }
    }

396
    for (auto inplace_tensor : inplace_tensors) {
397 398 399
      auto inplace_tensor_autograd_meta =
          egr::EagerUtils::autograd_meta(inplace_tensor);
      PADDLE_ENFORCE_EQ(!inplace_tensor_autograd_meta->StopGradient() &&
400
                            egr::EagerUtils::IsLeafTensor(*inplace_tensor),
401 402 403 404
                        false,
                        paddle::platform::errors::InvalidArgument(
                            "Leaf Var (%s) that doesn't stop gradient "
                            "can't use inplace strategy.",
405 406 407
                            inplace_tensor->name()));
      inplace_tensor->bump_inplace_version();
      VLOG(3) << "Tensor(" << inplace_tensor->name()
408 409
              << ") uses Inplace Strategy.";
    }
W
wanghuancoder 已提交
410

411 412 413 414
    auto grad_node =
        std::make_shared<egr::GradNodePyLayer>(reinterpret_cast<PyObject*>(ctx),
                                               outputs_autograd_meta.size(),
                                               inputs_autograd_meta.size());
W
wanghuancoder 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    ctx->grad_node = grad_node;

    if (ctx->materialize_grads) {
      grad_node->SaveForwardOutputsMeta(outputs_tensor);
    }

    for (size_t i = 0; i < inputs_autograd_meta.size(); i++) {
      if (ctx->forward_input_tensor_is_duplicable[i]) {
        for (auto t : inputs_tensor[i]) {
          grad_node->SetGradOutMeta(*t, i);
        }
      } else {
        grad_node->SetGradOutMeta(*inputs_tensor[i][0], i);
      }
    }

    for (size_t i = 0; i < outputs_autograd_meta.size(); i++) {
      if (ctx->forward_output_tensor_is_duplicable[i]) {
        egr::EagerUtils::SetOutRankWithSlot(&outputs_autograd_meta[i], i);
        egr::EagerUtils::SetHistory(&outputs_autograd_meta[i], grad_node);
        for (auto t : outputs_tensor[i]) {
          grad_node->SetGradInMeta(*t, i);
        }
      } else {
        egr::EagerUtils::SetOutRankWithSlot(outputs_autograd_meta[i][0], i);
        egr::EagerUtils::SetHistory(outputs_autograd_meta[i][0], grad_node);
        grad_node->SetGradInMeta(*outputs_tensor[i][0], i);
      }
    }
    VLOG(6) << "PyLayer construct backward node finish...";
  }

447
  if (outputs_size == 1) {
448 449 450 451 452 453
    if (!PyTuple_Check(outputs) && !PyList_Check(outputs)) {
      Py_XDECREF(outputs);
      outputs = PyTuple_GetItem(outputs_tuple, 0);
      Py_INCREF(outputs);
      Py_XDECREF(outputs_tuple);
    }
454
  }
455

456 457 458 459
  Py_XDECREF(forward_args);
  Py_XDECREF(kwargs_value_list);
  Py_XDECREF(backward_function);
  Py_XDECREF(forward_fn);
460
  Py_XDECREF(ctx);
461

W
wanghuancoder 已提交
462 463 464 465
  return outputs;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
PyObject* call_unpack_hook(PyLayerObject* self) {
  auto unpack_hook = self->unpack_hook;
  auto packed_value = self->container;

  auto packed_value_size = PyTuple_GET_SIZE(packed_value);
  auto unpacked_value = PyTuple_New(packed_value_size);

  for (Py_ssize_t i = 0; i < packed_value_size; i++) {
    PyObject* obj = PyTuple_GET_ITEM(packed_value, i);
    if (PyList_Check(obj)) {
      Py_ssize_t len = PyList_Size(obj);
      auto tmp_list = PyList_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
        PyTuple_SET_ITEM(tmp_list,
                         j,
                         reinterpret_cast<PyObject*>(((*unpack_hook)(
                             reinterpret_cast<void*>(o), nullptr))));
      }
      PyTuple_SET_ITEM(unpacked_value, i, tmp_list);
    } else if (PyTuple_Check(obj)) {
      Py_ssize_t len = PyTuple_Size(obj);
      auto tmp_tuple = PyTuple_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
        PyTuple_SET_ITEM(tmp_tuple,
                         j,
                         reinterpret_cast<PyObject*>((*unpack_hook)(
                             reinterpret_cast<void*>(o), nullptr)));
      }
      PyTuple_SET_ITEM(unpacked_value, i, tmp_tuple);
    } else {
      PyTuple_SET_ITEM(unpacked_value,
                       i,
                       reinterpret_cast<PyObject*>((*unpack_hook)(
                           reinterpret_cast<void*>(obj), nullptr)));
    }
  }

  return unpacked_value;
}

W
wanghuancoder 已提交
508 509 510
PyObject* tensor_properties_get_container(PyLayerObject* self, void* closure) {
  EAGER_TRY
  if (self->container == nullptr) {
511
    RETURN_PY_NONE;
W
wanghuancoder 已提交
512
  }
513 514 515 516 517 518
  if (self->container_be_packed) {
    return call_unpack_hook(self);
  } else {
    Py_INCREF(self->container);
    return self->container;
  }
W
wanghuancoder 已提交
519 520 521
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
void call_pack_hook(PyLayerObject* self, PyObject* value) {
  PyObject* saved_value = nullptr;
  if (PyTuple_Check(value)) {
    saved_value = value;
  } else if (PyList_Check(value)) {
    saved_value = PyList_AsTuple(value);
  } else {
    saved_value = PyTuple_New(1);
    Py_INCREF(value);
    PyTuple_SET_ITEM(saved_value, 0, value);
  }

  auto pack_hook = egr::SavedTensorsHooks::GetInstance().GetPackHook();
  self->unpack_hook = egr::SavedTensorsHooks::GetInstance().GetUnPackHook();

  auto saved_value_size = PyTuple_GET_SIZE(saved_value);
  PyObject* packed_value = PyTuple_New(saved_value_size);

  for (Py_ssize_t i = 0; i < saved_value_size; i++) {
    PyObject* obj = PyTuple_GET_ITEM(saved_value, i);
542
    if (PyCheckTensor(obj)) {
543 544 545 546 547 548 549 550 551
      PyTuple_SET_ITEM(packed_value,
                       i,
                       reinterpret_cast<PyObject*>(
                           (*pack_hook)(reinterpret_cast<void*>(obj))));
    } else if (PyList_Check(obj)) {
      Py_ssize_t len = PyList_Size(obj);
      auto tmp_list = PyList_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
552
        if (PyCheckTensor(o)) {
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
          PyTuple_SET_ITEM(tmp_list,
                           j,
                           reinterpret_cast<PyObject*>(
                               (*pack_hook)(reinterpret_cast<void*>(o))));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "save_for_backward only support Tensor, list of Tensor, tuple of "
              "Tensor."));
        }
      }
      PyTuple_SET_ITEM(packed_value, i, tmp_list);
    } else if (PyTuple_Check(obj)) {
      Py_ssize_t len = PyTuple_Size(obj);
      auto tmp_tuple = PyTuple_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
569
        if (PyCheckTensor(o)) {
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
          PyTuple_SET_ITEM(tmp_tuple,
                           j,
                           reinterpret_cast<PyObject*>(
                               (*pack_hook)(reinterpret_cast<void*>(o))));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "save_for_backward only support Tensor, list of Tensor, tuple of "
              "Tensor."));
        }
      }
      PyTuple_SET_ITEM(packed_value, i, tmp_tuple);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "save_for_backward only support Tensor, list of Tensor, tuple of "
          "Tensor."));
    }
  }

  if (PyTuple_Check(value)) {
    Py_XDECREF(saved_value);
  }

  Py_XDECREF(self->container);
  self->container = packed_value;
  self->container_be_packed = true;
}

597 598
int tensor_properties_set_container(PyLayerObject* self,
                                    PyObject* value,
W
wanghuancoder 已提交
599 600
                                    void* closure) {
  EAGER_TRY
601 602 603 604 605 606 607
  if (egr::SavedTensorsHooks::GetInstance().IsEnable()) {
    call_pack_hook(self, value);
  } else {
    Py_XINCREF(value);
    Py_XDECREF(self->container);
    self->container = value;
  }
W
wanghuancoder 已提交
608
  return 0;
0
0x45f 已提交
609
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
610 611 612 613 614 615
}

PyObject* tensor_properties_get_non_differentiable(PyLayerObject* self,
                                                   void* closure) {
  EAGER_TRY
  if (self->non_differentiable == nullptr) {
616
    RETURN_PY_NONE;
W
wanghuancoder 已提交
617 618 619 620 621 622 623
  }
  Py_INCREF(self->non_differentiable);
  return self->non_differentiable;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

int tensor_properties_set_non_differentiable(PyLayerObject* self,
624 625
                                             PyObject* value,
                                             void* closure) {
W
wanghuancoder 已提交
626 627 628 629 630
  EAGER_TRY
  Py_XINCREF(value);
  Py_XDECREF(self->non_differentiable);
  self->non_differentiable = value;
  return 0;
0
0x45f 已提交
631
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
632 633
}

634 635
PyObject* tensor_properties_get_not_inplace_tensors(PyLayerObject* self,
                                                    void* closure) {
W
wanghuancoder 已提交
636
  EAGER_TRY
637
  if (self->not_inplace_tensors == nullptr) {
638
    RETURN_PY_NONE;
W
wanghuancoder 已提交
639
  }
640 641
  Py_INCREF(self->not_inplace_tensors);
  return self->not_inplace_tensors;
W
wanghuancoder 已提交
642 643 644
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

645 646 647
int tensor_properties_set_not_inplace_tensors(PyLayerObject* self,
                                              PyObject* value,
                                              void* closure) {
W
wanghuancoder 已提交
648 649
  EAGER_TRY
  Py_XINCREF(value);
650 651
  Py_XDECREF(self->not_inplace_tensors);
  self->not_inplace_tensors = value;
W
wanghuancoder 已提交
652
  return 0;
0
0x45f 已提交
653
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
654 655 656
}

int tensor_properties_set_materialize_grads(PyLayerObject* self,
657 658
                                            PyObject* value,
                                            void* closure) {
W
wanghuancoder 已提交
659 660 661
  EAGER_TRY
  self->materialize_grads = CastPyArg2AttrBoolean(value, 0);
  return 0;
0
0x45f 已提交
662
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
663 664 665
}

PyMethodDef pylayer_methods[] = {
666
    {"name", (PyCFunction)(void (*)())pylayer_method_name, METH_NOARGS, NULL},
667
    {"apply",
668
     (PyCFunction)(void (*)())pylayer_method_apply,
669 670
     METH_CLASS | METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
671 672
    {NULL, NULL, 0, NULL}};

673
struct PyGetSetDef pylayer_properties[] {
674 675 676 677 678 679 680 681 682 683
  {"container",
   (getter)tensor_properties_get_container,
   (setter)tensor_properties_set_container,
   nullptr,
   nullptr},
      {"non_differentiable",
       (getter)tensor_properties_get_non_differentiable,
       (setter)tensor_properties_set_non_differentiable,
       nullptr,
       nullptr},
684 685 686
      {"not_inplace_tensors",
       (getter)tensor_properties_get_not_inplace_tensors,
       (setter)tensor_properties_set_not_inplace_tensors,
687 688 689 690 691 692 693
       nullptr,
       nullptr},
      {"materialize_grads",
       nullptr,
       (setter)tensor_properties_set_materialize_grads,
       nullptr,
       nullptr},
694 695 696 697
  {
    nullptr, nullptr, nullptr, nullptr, nullptr
  }
};
W
wanghuancoder 已提交
698 699 700 701 702 703 704 705 706 707 708 709

void BindEagerPyLayer(PyObject* module) {
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
      PyType_Type.tp_alloc(&PyType_Type, 0));
  heap_type->ht_name = ToPyObject("PyLayer");
  heap_type->ht_qualname = ToPyObject("PyLayer");
  auto type = &heap_type->ht_type;
  type->tp_name = "PyLayer";
  type->tp_basicsize = sizeof(PyLayerObject);
  type->tp_dealloc = (destructor)PyLayerDealloc;
  type->tp_methods = pylayer_methods;
  type->tp_getset = pylayer_properties;
710
  type->tp_new = (newfunc)PyLayerNew;
W
wanghuancoder 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
  p_pylayer_type = type;

  if (PyType_Ready(type) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyType_Ready)."));
    return;
  }

  Py_INCREF(type);
  if (PyModule_AddObject(module, "PyLayer", reinterpret_cast<PyObject*>(type)) <
      0) {
    Py_DECREF(type);
    Py_DECREF(module);
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyModule_AddObject)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle