eager_py_layer.cc 25.7 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>
13 14 15 16
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
W
wanghuancoder 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

#include <set>
#include <string>
#include <vector>

#pragma GCC diagnostic ignored "-Wattributes"
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/pylayer/py_layer_node.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "pybind11/detail/internals.h"
39
#include "pybind11/pytypes.h"
40 41
#pragma GCC diagnostic ignored "-Wwrite-strings"
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
W
wanghuancoder 已提交
42 43 44 45 46 47 48 49 50

namespace paddle {
namespace pybind {

namespace py = ::pybind11;

PyTypeObject* p_pylayer_type;
extern PyTypeObject* p_tensor_type;

51 52
std::set<paddle::Tensor*> GetTensorsFromPyObject(PyObject* obj) {
  std::set<paddle::Tensor*> result;
W
wanghuancoder 已提交
53 54 55
  if (obj == nullptr) {
    return result;
  }
56
  if (PyCheckTensor(obj)) {
W
wanghuancoder 已提交
57 58 59 60
    result.insert(&reinterpret_cast<TensorObject*>(obj)->tensor);  // NOLINT
  } else if (PyList_Check(obj)) {
    Py_ssize_t len = PyList_Size(obj);
    for (Py_ssize_t i = 0; i < len; i++) {
61
      if (PyCheckTensor(PyList_GetItem(obj, i))) {
W
wanghuancoder 已提交
62 63 64 65 66 67 68 69
        result.insert(
            &reinterpret_cast<TensorObject*>(PyList_GetItem(obj, i))  // NOLINT
                 ->tensor);
      }
    }
  } else if (PyTuple_Check(obj)) {
    Py_ssize_t len = PyTuple_Size(obj);
    for (Py_ssize_t i = 0; i < len; i++) {
70
      if (PyCheckTensor(PyTuple_GetItem(obj, i))) {
W
wanghuancoder 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84
        result.insert(
            &reinterpret_cast<TensorObject*>(PyTuple_GetItem(obj, i))  // NOLINT
                 ->tensor);
      }
    }
  }
  return result;
}

PyObject* PyLayerNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
    auto v = reinterpret_cast<PyLayerObject*>(obj);
    v->materialize_grads = true;
85
    v->container_be_packed = false;
W
wanghuancoder 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99
    new (&v->grad_node) std::weak_ptr<egr::GradNodePyLayer>();
    new (&v->forward_input_tensor_is_duplicable) std::vector<bool>();
    new (&v->forward_output_tensor_is_duplicable) std::vector<bool>();
  }
  return obj;
}

static void PyLayerDealloc(PyLayerObject* self) {
  if (self->container) {
    Py_DECREF(self->container);
  }
  if (self->non_differentiable) {
    Py_DECREF(self->non_differentiable);
  }
100 101
  if (self->not_inplace_tensors) {
    Py_DECREF(self->not_inplace_tensors);
W
wanghuancoder 已提交
102 103
  }
  self->grad_node.~weak_ptr<egr::GradNodePyLayer>();
104
  self->unpack_hook = nullptr;
W
wanghuancoder 已提交
105 106 107 108 109 110 111 112 113 114 115 116
  self->forward_input_tensor_is_duplicable.~vector();
  self->forward_output_tensor_is_duplicable.~vector();
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

PyObject* pylayer_method_name(PyObject* self, PyObject* noargs) {
  EAGER_TRY
  return ToPyObject(
      reinterpret_cast<PyLayerObject*>(self)->grad_node.lock()->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

117
PyObject* new_tensor_with_impl(paddle::Tensor* tensor) {
118 119 120
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
  if (obj) {
    auto v = reinterpret_cast<TensorObject*>(obj);
121
    new (&(v->tensor)) paddle::Tensor();
122 123 124 125 126 127 128 129 130
    v->tensor.set_impl(tensor->impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }
  return obj;
}

131 132
PyObject* pylayer_method_apply(PyObject* cls,
                               PyObject* args,
W
wanghuancoder 已提交
133 134 135 136 137 138 139 140 141 142 143 144
                               PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Begin run PyLayer apply...";
  PyObject* backward_function =
      PyObject_GetAttrString(cls, "_backward_function");
  if (!backward_function) {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Get _backward_function faild."));
  }
  PyLayerObject* ctx = reinterpret_cast<PyLayerObject*>(
      PyObject_CallFunctionObjArgs(backward_function, nullptr));
  if (!ctx) {
145 146
    PADDLE_THROW(paddle::platform::errors::External(
        pybind11::detail::error_string().c_str()));
W
wanghuancoder 已提交
147 148 149 150 151 152 153
    return nullptr;
  }
  VLOG(6) << "PyLayer construct PyLayerContext finish...";

  bool require_any_grad = false;

  size_t inputs_size = 0;
154 155
  size_t args_size = 0;
  size_t kwargs_size = 0;
W
wanghuancoder 已提交
156 157 158
  PyObject* forward_args = nullptr;
  PyObject* kwargs_value_list = nullptr;
  if (kwargs) {
159
    kwargs_size = PyDict_Size(kwargs);
W
wanghuancoder 已提交
160 161
    kwargs_value_list = PyDict_Values(kwargs);
  }
162 163 164 165 166
  if (args) {
    args_size = PyTuple_GET_SIZE(args);
  }
  inputs_size = kwargs_size + args_size;
  forward_args = PyTuple_New(args_size + 1);
W
wanghuancoder 已提交
167 168 169 170 171
  Py_INCREF(ctx);
  PyTuple_SET_ITEM(forward_args, 0, reinterpret_cast<PyObject*>(ctx));

  std::vector<std::vector<egr::AutogradMeta*>> inputs_autograd_meta;
  inputs_autograd_meta.reserve(inputs_size);
172
  std::vector<std::vector<paddle::Tensor*>> inputs_tensor;
W
wanghuancoder 已提交
173 174 175
  inputs_tensor.reserve(inputs_size);
  ctx->forward_input_tensor_is_duplicable.clear();
  ctx->forward_input_tensor_is_duplicable.reserve(inputs_size);
176
  std::set<phi::TensorBase*> input_tensorbases;
W
wanghuancoder 已提交
177 178
  for (size_t i = 0; i < inputs_size; i++) {
    PyObject* obj = nullptr;
179 180
    if (i >= args_size) {
      obj = PyList_GetItem(kwargs_value_list, i - args_size);
W
wanghuancoder 已提交
181 182 183
    } else {
      obj = PyTuple_GET_ITEM(args, i);
    }
184
    if (PyCheckTensor(obj)) {
185 186
      input_tensorbases.insert(
          reinterpret_cast<TensorObject*>(obj)->tensor.impl().get());
W
wanghuancoder 已提交
187 188 189 190 191 192 193 194 195 196 197 198
      auto autograd_meta = egr::EagerUtils::nullable_autograd_meta(
          reinterpret_cast<TensorObject*>(obj)->tensor);
      inputs_autograd_meta.push_back({autograd_meta});
      inputs_tensor.push_back(
          {&(reinterpret_cast<TensorObject*>(obj)->tensor)});  // NOLINT
      bool stop_gradient =
          autograd_meta == nullptr ? true : autograd_meta->StopGradient();
      if (!stop_gradient) {
        require_any_grad = true;
      }
      ctx->forward_input_tensor_is_duplicable.push_back(false);
    } else if (PyList_Check(obj)) {
199
      std::vector<paddle::Tensor*> tensors;
W
wanghuancoder 已提交
200
      Py_ssize_t len = PyList_Size(obj);
201 202
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
203
        if (PyCheckTensor(o)) {
204 205 206
          input_tensorbases.insert(
              reinterpret_cast<TensorObject*>(o)->tensor.impl().get());
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
W
wanghuancoder 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        }
      }
      if (!tensors.empty()) {
        auto autograd_meta = egr::EagerUtils::nullable_autograd_meta(tensors);
        for (auto iter : autograd_meta) {
          bool stop_gradient = iter == nullptr ? true : iter->StopGradient();
          if (!stop_gradient) {
            require_any_grad = true;
          }
        }
        inputs_autograd_meta.push_back(autograd_meta);
        inputs_tensor.push_back(tensors);
        ctx->forward_input_tensor_is_duplicable.push_back(true);
      }
    } else if (PyTuple_Check(obj)) {
222
      std::vector<paddle::Tensor*> tensors;
W
wanghuancoder 已提交
223
      Py_ssize_t len = PyTuple_Size(obj);
224 225
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
226
        if (PyCheckTensor(o)) {
227 228 229
          input_tensorbases.insert(
              reinterpret_cast<TensorObject*>(o)->tensor.impl().get());
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
W
wanghuancoder 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        }
      }
      if (!tensors.empty()) {
        auto autograd_meta = egr::EagerUtils::nullable_autograd_meta(tensors);
        for (auto iter : autograd_meta) {
          bool stop_gradient = iter == nullptr ? true : iter->StopGradient();
          if (!stop_gradient) {
            require_any_grad = true;
          }
        }
        inputs_autograd_meta.push_back(autograd_meta);
        inputs_tensor.push_back(tensors);
        ctx->forward_input_tensor_is_duplicable.push_back(true);
      }
    }

246
    if (i < args_size) {
W
wanghuancoder 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
      Py_INCREF(obj);
      PyTuple_SET_ITEM(forward_args, i + 1, obj);
    }
  }

  VLOG(6)
      << "PyLayer forward args is ready, begin call user's forward function...";
  // call forward
  auto forward_fn = PyObject_GetAttrString(cls, "forward");
  if (!forward_fn) {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Get forward function faild."));
  }
  bool trace_backward = egr::Controller::Instance().HasGrad();
  egr::Controller::Instance().SetHasGrad(false);
  auto outputs = PyObject_Call(forward_fn, forward_args, kwargs);
  egr::Controller::Instance().SetHasGrad(trace_backward);
  if (!outputs) {
265 266 267 268
    Py_XDECREF(forward_args);
    Py_XDECREF(kwargs_value_list);
    Py_XDECREF(backward_function);
    Py_XDECREF(forward_fn);
W
wanghuancoder 已提交
269 270 271 272 273 274
    return nullptr;
  }

  PyObject* outputs_tuple = nullptr;
  if (PyTuple_Check(outputs)) {
    outputs_tuple = outputs;
275 276
  } else if (PyList_Check(outputs)) {
    outputs_tuple = PyList_AsTuple(outputs);
W
wanghuancoder 已提交
277 278 279 280 281 282
  } else {
    outputs_tuple = PyTuple_New(1);
    Py_INCREF(outputs);
    PyTuple_SET_ITEM(outputs_tuple, 0, outputs);
  }

283
  std::set<paddle::Tensor*> inplace_tensors;
284 285 286 287 288 289
  std::set<phi::TensorBase*> not_inplace_tensorbases;
  auto not_inplace_tensors = GetTensorsFromPyObject(ctx->not_inplace_tensors);
  for (auto it : not_inplace_tensors) {
    not_inplace_tensorbases.insert(it->impl().get());
  }

W
wanghuancoder 已提交
290
  auto outputs_size = PyTuple_GET_SIZE(outputs_tuple);
291
  std::vector<std::vector<paddle::Tensor*>> outputs_tensor;
W
wanghuancoder 已提交
292 293 294 295 296 297 298
  outputs_tensor.reserve(outputs_size);
  std::vector<std::vector<egr::AutogradMeta*>> outputs_autograd_meta;
  outputs_autograd_meta.reserve(outputs_size);
  ctx->forward_output_tensor_is_duplicable.clear();
  ctx->forward_output_tensor_is_duplicable.reserve(outputs_size);
  for (Py_ssize_t i = 0; i < outputs_size; i++) {
    PyObject* obj = PyTuple_GET_ITEM(outputs_tuple, i);
299
    if (PyCheckTensor(obj)) {
W
wanghuancoder 已提交
300 301 302 303 304
      outputs_tensor.push_back(
          {&(reinterpret_cast<TensorObject*>(obj)->tensor)});
      outputs_autograd_meta.push_back({egr::EagerUtils::autograd_meta(
          &(reinterpret_cast<TensorObject*>(obj)->tensor))});
      ctx->forward_output_tensor_is_duplicable.push_back(false);
305 306 307 308 309 310 311 312 313 314 315 316 317
      if (input_tensorbases.count(
              reinterpret_cast<TensorObject*>(obj)->tensor.impl().get())) {
        if (not_inplace_tensorbases.count(
                reinterpret_cast<TensorObject*>(obj)->tensor.impl().get())) {
          PyTuple_SET_ITEM(outputs_tuple,
                           i,
                           new_tensor_with_impl(&(
                               reinterpret_cast<TensorObject*>(obj)->tensor)));
        } else {
          inplace_tensors.insert(
              &(reinterpret_cast<TensorObject*>(obj)->tensor));
        }
      }
W
wanghuancoder 已提交
318
    } else if (PyList_Check(obj)) {
319
      std::vector<paddle::Tensor*> tensors;
W
wanghuancoder 已提交
320
      Py_ssize_t len = PyList_Size(obj);
321 322
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
323
        if (PyCheckTensor(o)) {
324 325 326 327 328 329 330 331 332 333 334 335 336 337
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
          if (input_tensorbases.count(
                  reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
            if (not_inplace_tensorbases.count(
                    reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
              PyTuple_SetItem(obj,
                              j,
                              new_tensor_with_impl(&(
                                  reinterpret_cast<TensorObject*>(o)->tensor)));
            } else {
              inplace_tensors.insert(
                  &(reinterpret_cast<TensorObject*>(o)->tensor));
            }
          }
W
wanghuancoder 已提交
338 339 340 341 342 343 344 345 346
        }
      }
      if (!tensors.empty()) {
        outputs_tensor.push_back(tensors);
        outputs_autograd_meta.push_back(
            egr::EagerUtils::autograd_meta(&tensors));
        ctx->forward_output_tensor_is_duplicable.push_back(true);
      }
    } else if (PyTuple_Check(obj)) {
347
      std::vector<paddle::Tensor*> tensors;
W
wanghuancoder 已提交
348
      Py_ssize_t len = PyTuple_Size(obj);
349 350
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
351
        if (PyCheckTensor(o)) {
352 353 354 355 356 357 358 359 360 361 362 363 364 365
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
          if (input_tensorbases.count(
                  reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
            if (not_inplace_tensorbases.count(
                    reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
              PyTuple_SetItem(obj,
                              j,
                              new_tensor_with_impl(&(
                                  reinterpret_cast<TensorObject*>(o)->tensor)));
            } else {
              inplace_tensors.insert(
                  &(reinterpret_cast<TensorObject*>(o)->tensor));
            }
          }
W
wanghuancoder 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
        }
      }
      if (!tensors.empty()) {
        outputs_tensor.push_back(tensors);
        outputs_autograd_meta.push_back(
            egr::EagerUtils::autograd_meta(&tensors));
        ctx->forward_output_tensor_is_duplicable.push_back(true);
      }
    }
  }

  if (outputs_tensor.size() == 0) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "At least one output of `PyLayer.forward` is a `Tensor`."));
  }
  VLOG(6) << "PyLayer forward function finish...";

  if (require_any_grad && trace_backward) {
384
    auto non_differentiable = GetTensorsFromPyObject(ctx->non_differentiable);
W
wanghuancoder 已提交
385 386 387 388 389 390
    for (size_t i = 0; i < outputs_autograd_meta.size(); i++) {
      for (size_t j = 0; j < outputs_autograd_meta[i].size(); j++) {
        if (non_differentiable.find(outputs_tensor[i][j]) !=
            non_differentiable.end()) {
          outputs_autograd_meta[i][j]->SetStopGradient(true);
        } else {
391
          outputs_autograd_meta[i][j]->SetStopGradient(false);
W
wanghuancoder 已提交
392 393 394 395
        }
      }
    }

396 397 398 399 400 401
    for (auto it = inplace_tensors.begin(); it != inplace_tensors.end(); ++it) {
      auto inplace_tensor = *it;
      auto inplace_tensor_autograd_meta =
          egr::EagerUtils::autograd_meta(inplace_tensor);
      PADDLE_ENFORCE_EQ(!inplace_tensor_autograd_meta->StopGradient() &&
                            egr::egr_utils_api::IsLeafTensor(*inplace_tensor),
402 403 404 405
                        false,
                        paddle::platform::errors::InvalidArgument(
                            "Leaf Var (%s) that doesn't stop gradient "
                            "can't use inplace strategy.",
406 407 408
                            inplace_tensor->name()));
      inplace_tensor->bump_inplace_version();
      VLOG(3) << "Tensor(" << inplace_tensor->name()
409 410
              << ") uses Inplace Strategy.";
    }
W
wanghuancoder 已提交
411

412 413 414 415
    auto grad_node =
        std::make_shared<egr::GradNodePyLayer>(reinterpret_cast<PyObject*>(ctx),
                                               outputs_autograd_meta.size(),
                                               inputs_autograd_meta.size());
W
wanghuancoder 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    ctx->grad_node = grad_node;

    if (ctx->materialize_grads) {
      grad_node->SaveForwardOutputsMeta(outputs_tensor);
    }

    for (size_t i = 0; i < inputs_autograd_meta.size(); i++) {
      if (ctx->forward_input_tensor_is_duplicable[i]) {
        for (auto t : inputs_tensor[i]) {
          grad_node->SetGradOutMeta(*t, i);
        }
      } else {
        grad_node->SetGradOutMeta(*inputs_tensor[i][0], i);
      }
    }

    for (size_t i = 0; i < outputs_autograd_meta.size(); i++) {
      if (ctx->forward_output_tensor_is_duplicable[i]) {
        egr::EagerUtils::SetOutRankWithSlot(&outputs_autograd_meta[i], i);
        egr::EagerUtils::SetHistory(&outputs_autograd_meta[i], grad_node);
        for (auto t : outputs_tensor[i]) {
          grad_node->SetGradInMeta(*t, i);
        }
      } else {
        egr::EagerUtils::SetOutRankWithSlot(outputs_autograd_meta[i][0], i);
        egr::EagerUtils::SetHistory(outputs_autograd_meta[i][0], grad_node);
        grad_node->SetGradInMeta(*outputs_tensor[i][0], i);
      }
    }
    VLOG(6) << "PyLayer construct backward node finish...";
  }

448
  if (outputs_size == 1) {
449 450 451 452 453 454
    if (!PyTuple_Check(outputs) && !PyList_Check(outputs)) {
      Py_XDECREF(outputs);
      outputs = PyTuple_GetItem(outputs_tuple, 0);
      Py_INCREF(outputs);
      Py_XDECREF(outputs_tuple);
    }
455
  }
456

457 458 459 460
  Py_XDECREF(forward_args);
  Py_XDECREF(kwargs_value_list);
  Py_XDECREF(backward_function);
  Py_XDECREF(forward_fn);
461
  Py_XDECREF(ctx);
462

W
wanghuancoder 已提交
463 464 465 466
  return outputs;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
PyObject* call_unpack_hook(PyLayerObject* self) {
  auto unpack_hook = self->unpack_hook;
  auto packed_value = self->container;

  auto packed_value_size = PyTuple_GET_SIZE(packed_value);
  auto unpacked_value = PyTuple_New(packed_value_size);

  for (Py_ssize_t i = 0; i < packed_value_size; i++) {
    PyObject* obj = PyTuple_GET_ITEM(packed_value, i);
    if (PyList_Check(obj)) {
      Py_ssize_t len = PyList_Size(obj);
      auto tmp_list = PyList_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
        PyTuple_SET_ITEM(tmp_list,
                         j,
                         reinterpret_cast<PyObject*>(((*unpack_hook)(
                             reinterpret_cast<void*>(o), nullptr))));
      }
      PyTuple_SET_ITEM(unpacked_value, i, tmp_list);
    } else if (PyTuple_Check(obj)) {
      Py_ssize_t len = PyTuple_Size(obj);
      auto tmp_tuple = PyTuple_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
        PyTuple_SET_ITEM(tmp_tuple,
                         j,
                         reinterpret_cast<PyObject*>((*unpack_hook)(
                             reinterpret_cast<void*>(o), nullptr)));
      }
      PyTuple_SET_ITEM(unpacked_value, i, tmp_tuple);
    } else {
      PyTuple_SET_ITEM(unpacked_value,
                       i,
                       reinterpret_cast<PyObject*>((*unpack_hook)(
                           reinterpret_cast<void*>(obj), nullptr)));
    }
  }

  return unpacked_value;
}

W
wanghuancoder 已提交
509 510 511
PyObject* tensor_properties_get_container(PyLayerObject* self, void* closure) {
  EAGER_TRY
  if (self->container == nullptr) {
512
    RETURN_PY_NONE;
W
wanghuancoder 已提交
513
  }
514 515 516 517 518 519
  if (self->container_be_packed) {
    return call_unpack_hook(self);
  } else {
    Py_INCREF(self->container);
    return self->container;
  }
W
wanghuancoder 已提交
520 521 522
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
void call_pack_hook(PyLayerObject* self, PyObject* value) {
  PyObject* saved_value = nullptr;
  if (PyTuple_Check(value)) {
    saved_value = value;
  } else if (PyList_Check(value)) {
    saved_value = PyList_AsTuple(value);
  } else {
    saved_value = PyTuple_New(1);
    Py_INCREF(value);
    PyTuple_SET_ITEM(saved_value, 0, value);
  }

  auto pack_hook = egr::SavedTensorsHooks::GetInstance().GetPackHook();
  self->unpack_hook = egr::SavedTensorsHooks::GetInstance().GetUnPackHook();

  auto saved_value_size = PyTuple_GET_SIZE(saved_value);
  PyObject* packed_value = PyTuple_New(saved_value_size);

  for (Py_ssize_t i = 0; i < saved_value_size; i++) {
    PyObject* obj = PyTuple_GET_ITEM(saved_value, i);
543
    if (PyCheckTensor(obj)) {
544 545 546 547 548 549 550 551 552
      PyTuple_SET_ITEM(packed_value,
                       i,
                       reinterpret_cast<PyObject*>(
                           (*pack_hook)(reinterpret_cast<void*>(obj))));
    } else if (PyList_Check(obj)) {
      Py_ssize_t len = PyList_Size(obj);
      auto tmp_list = PyList_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
553
        if (PyCheckTensor(o)) {
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
          PyTuple_SET_ITEM(tmp_list,
                           j,
                           reinterpret_cast<PyObject*>(
                               (*pack_hook)(reinterpret_cast<void*>(o))));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "save_for_backward only support Tensor, list of Tensor, tuple of "
              "Tensor."));
        }
      }
      PyTuple_SET_ITEM(packed_value, i, tmp_list);
    } else if (PyTuple_Check(obj)) {
      Py_ssize_t len = PyTuple_Size(obj);
      auto tmp_tuple = PyTuple_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
570
        if (PyCheckTensor(o)) {
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
          PyTuple_SET_ITEM(tmp_tuple,
                           j,
                           reinterpret_cast<PyObject*>(
                               (*pack_hook)(reinterpret_cast<void*>(o))));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "save_for_backward only support Tensor, list of Tensor, tuple of "
              "Tensor."));
        }
      }
      PyTuple_SET_ITEM(packed_value, i, tmp_tuple);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "save_for_backward only support Tensor, list of Tensor, tuple of "
          "Tensor."));
    }
  }

  if (PyTuple_Check(value)) {
    Py_XDECREF(saved_value);
  }

  Py_XDECREF(self->container);
  self->container = packed_value;
  self->container_be_packed = true;
}

598 599
int tensor_properties_set_container(PyLayerObject* self,
                                    PyObject* value,
W
wanghuancoder 已提交
600 601
                                    void* closure) {
  EAGER_TRY
602 603 604 605 606 607 608
  if (egr::SavedTensorsHooks::GetInstance().IsEnable()) {
    call_pack_hook(self, value);
  } else {
    Py_XINCREF(value);
    Py_XDECREF(self->container);
    self->container = value;
  }
W
wanghuancoder 已提交
609
  return 0;
0
0x45f 已提交
610
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
611 612 613 614 615 616
}

PyObject* tensor_properties_get_non_differentiable(PyLayerObject* self,
                                                   void* closure) {
  EAGER_TRY
  if (self->non_differentiable == nullptr) {
617
    RETURN_PY_NONE;
W
wanghuancoder 已提交
618 619 620 621 622 623 624
  }
  Py_INCREF(self->non_differentiable);
  return self->non_differentiable;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

int tensor_properties_set_non_differentiable(PyLayerObject* self,
625 626
                                             PyObject* value,
                                             void* closure) {
W
wanghuancoder 已提交
627 628 629 630 631
  EAGER_TRY
  Py_XINCREF(value);
  Py_XDECREF(self->non_differentiable);
  self->non_differentiable = value;
  return 0;
0
0x45f 已提交
632
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
633 634
}

635 636
PyObject* tensor_properties_get_not_inplace_tensors(PyLayerObject* self,
                                                    void* closure) {
W
wanghuancoder 已提交
637
  EAGER_TRY
638
  if (self->not_inplace_tensors == nullptr) {
639
    RETURN_PY_NONE;
W
wanghuancoder 已提交
640
  }
641 642
  Py_INCREF(self->not_inplace_tensors);
  return self->not_inplace_tensors;
W
wanghuancoder 已提交
643 644 645
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

646 647 648
int tensor_properties_set_not_inplace_tensors(PyLayerObject* self,
                                              PyObject* value,
                                              void* closure) {
W
wanghuancoder 已提交
649 650
  EAGER_TRY
  Py_XINCREF(value);
651 652
  Py_XDECREF(self->not_inplace_tensors);
  self->not_inplace_tensors = value;
W
wanghuancoder 已提交
653
  return 0;
0
0x45f 已提交
654
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
655 656 657
}

int tensor_properties_set_materialize_grads(PyLayerObject* self,
658 659
                                            PyObject* value,
                                            void* closure) {
W
wanghuancoder 已提交
660 661 662
  EAGER_TRY
  self->materialize_grads = CastPyArg2AttrBoolean(value, 0);
  return 0;
0
0x45f 已提交
663
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
664 665 666
}

PyMethodDef pylayer_methods[] = {
667 668 669 670 671 672 673 674
    {"name",
     (PyCFunction)(void (*)(void))pylayer_method_name,
     METH_NOARGS,
     NULL},
    {"apply",
     (PyCFunction)(void (*)(void))pylayer_method_apply,
     METH_CLASS | METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
675 676
    {NULL, NULL, 0, NULL}};

677
struct PyGetSetDef pylayer_properties[] {
678 679 680 681 682 683 684 685 686 687
  {"container",
   (getter)tensor_properties_get_container,
   (setter)tensor_properties_set_container,
   nullptr,
   nullptr},
      {"non_differentiable",
       (getter)tensor_properties_get_non_differentiable,
       (setter)tensor_properties_set_non_differentiable,
       nullptr,
       nullptr},
688 689 690
      {"not_inplace_tensors",
       (getter)tensor_properties_get_not_inplace_tensors,
       (setter)tensor_properties_set_not_inplace_tensors,
691 692 693 694 695 696 697
       nullptr,
       nullptr},
      {"materialize_grads",
       nullptr,
       (setter)tensor_properties_set_materialize_grads,
       nullptr,
       nullptr},
698 699 700 701
  {
    nullptr, nullptr, nullptr, nullptr, nullptr
  }
};
W
wanghuancoder 已提交
702 703 704 705 706 707 708 709 710 711 712 713

void BindEagerPyLayer(PyObject* module) {
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
      PyType_Type.tp_alloc(&PyType_Type, 0));
  heap_type->ht_name = ToPyObject("PyLayer");
  heap_type->ht_qualname = ToPyObject("PyLayer");
  auto type = &heap_type->ht_type;
  type->tp_name = "PyLayer";
  type->tp_basicsize = sizeof(PyLayerObject);
  type->tp_dealloc = (destructor)PyLayerDealloc;
  type->tp_methods = pylayer_methods;
  type->tp_getset = pylayer_properties;
714
  type->tp_new = (newfunc)PyLayerNew;
W
wanghuancoder 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
  p_pylayer_type = type;

  if (PyType_Ready(type) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyType_Ready)."));
    return;
  }

  Py_INCREF(type);
  if (PyModule_AddObject(module, "PyLayer", reinterpret_cast<PyObject*>(type)) <
      0) {
    Py_DECREF(type);
    Py_DECREF(module);
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyModule_AddObject)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle