dataloader_iter.py 33.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import itertools
import logging
17
import os
18
import queue
19 20
import sys
import threading
21
import time
22
import warnings
23

24
import numpy as np
25

26
import paddle
27 28 29
from paddle import profiler
from paddle.fluid.framework import _current_expected_place, _set_expected_place
from paddle.profiler.timer import benchmark
30
from paddle.profiler.utils import in_profiler_mode
31

32
from ...framework import core, in_dynamic_mode
33 34 35
from ..multiprocess_utils import (
    MP_STATUS_CHECK_INTERVAL,
    CleanupFuncRegistrar,
36
    _set_SIGCHLD_handler,
37
)
38
from .batch_sampler import _InfiniteIterableSampler
39
from .collate import default_collate_fn, default_convert_fn
40
from .flat import _flatten_batch, _restore_batch
41 42 43 44
from .worker import (
    _DatasetKind,
    _IterableDatasetStopIteration,
    _ResumeIteration,
45 46
    _worker_loop,
    _WorkerException,
47
)
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
# NOTE: fix `terminate called without an active exception`
# if for loop break and program exit immediately(with no model
# layers processing) after iterate **the first few data** in
# distributed lauch mode, distributed launch will call
# terminate() to kill main process on each devices, but thread
# is still iterating to fullfill blocking queue caches, which
# may cause thread error `terminate called without an active
# exception` for terminate is a strong singal and `__del__`
# of DataLoader may not be called, so we add a global link to
# the last DataLoader instance to call `__del__` to clean up
# resources
# NOTE: cannot simply as `__del__` to CleanupFuncRegistrar,
# for this will remain a link to each DataLoader instance in
# global, and will precludes GC to auto collect DataLoader
# instance and will cause memory leak
_loader = None


def _clear_loader():
    global _loader
    if _loader is not None:
        try:
            _loader.__del__()
            del _loader
        except:
            pass


CleanupFuncRegistrar.register(_clear_loader)

79

80
class _DataLoaderIterBase:
81 82 83 84 85
    """
    Iterator implement of DataLoader, will load and feed mini-batch
    data by setting in given dataloader.

    Args:
86
        loader(instance of DataLoader): instance of `paddle.io.DataLoader`
87 88 89 90 91 92 93 94
    """

    def __init__(self, loader):
        self._dataset = loader.dataset
        self._feed_list = loader.feed_list or []
        self._places = loader.places
        self._return_list = loader.return_list
        self._batch_sampler = loader.batch_sampler
95
        self._drop_last = loader.drop_last
96
        self._auto_collate_batch = loader.auto_collate_batch
97 98
        self._num_workers = loader.num_workers
        self._use_buffer_reader = loader.use_buffer_reader
99
        self._prefetch_factor = loader.prefetch_factor
100
        self._use_shared_memory = loader.use_shared_memory
101 102 103
        self._timeout = (
            loader.timeout if loader.timeout > 0 else MP_STATUS_CHECK_INTERVAL
        )
104
        self._worker_init_fn = loader.worker_init_fn
105
        self._dataset_kind = loader.dataset_kind
106
        self._pin_memory = loader.pin_memory
107

K
Kaipeng Deng 已提交
108
        self._sampler_iter = iter(self._index_sampler)
109 110 111
        if self._auto_collate_batch:
            self._collate_fn = loader.collate_fn or default_collate_fn
        else:
112
            self._collate_fn = loader.collate_fn or default_convert_fn
113

114 115 116 117 118 119 120 121 122
        # LoDTensorBlockingQueue instance for create_py_reader and a thread
        # to put mini-batch data to self._blocking_queue, mini-batch data
        # will be get from:
        # 1. multi-process mode: get data from workers' result queue
        # 2. single-process mode: read mini-batch data in main process
        self._blocking_queue = None
        self._thread = None
        self._thread_done_event = threading.Event()

K
Kaipeng Deng 已提交
123 124 125 126 127 128 129 130 131 132
    @property
    def _index_sampler(self):
        if self._auto_collate_batch:
            return self._batch_sampler
        else:
            if self._dataset_kind == _DatasetKind.MAP:
                return list(range(len(self._dataset)))
            else:
                return _InfiniteIterableSampler(self._dataset, 1)

133 134 135 136 137 138
    def __iter__(self):
        return self

    def __len__(self):
        return len(self._batch_sampler)

139 140 141 142 143 144 145 146 147 148
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.kill()

149 150 151 152 153 154 155 156

class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
    """
    Single process implement of DataLoaderIter, loading data from
    loader.data in main process
    """

    def __init__(self, loader):
157
        super().__init__(loader)
158

159
        self._dataset_fetcher = _DatasetKind.create_fetcher(
160 161 162 163 164 165
            self._dataset_kind,
            self._dataset,
            self._auto_collate_batch,
            self._collate_fn,
            self._drop_last,
        )
166

167 168 169 170 171 172 173 174
        # NOTE: _structrue_infos used to record the data structure of
        # batch to restore batch structure after reading Tensor
        # from blocking_queue in single-process mode. Note that
        # only single process is used in single-process mode, we
        # can record the data structure sequencely in a list without
        # recording the send and recv index
        self._structure_infos = []

175
        # NOTE: len(self._places) batch data compose as an output
176
        # iteration, set blocking_queue can cache "self._prefetch_factor" iteration datas
177
        # at most here
178
        self._blocking_queue_capacity = self._prefetch_factor * len(
179 180
            self._places
        )
181 182

        self._init_thread()
183 184 185 186
        self._shutdown = False

        global _loader
        _loader = self
187 188 189 190 191 192 193 194

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
195
        # if only 1 place, do not need to keep order
196
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
197 198 199 200
            core.Variable(),
            self._blocking_queue_capacity,
            len(self._places) > 1,
        )
201
        self._reader = core.create_py_reader(
202 203 204 205 206 207 208 209 210 211 212 213 214 215
            self._blocking_queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_buffer_reader,
            True,
            self._pin_memory,
        )

        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(),)
        )
216 217 218
        self._thread.daemon = True
        self._thread.start()

219
    def _thread_loop(self, legacy_expected_place):
220
        # NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
221 222
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
223
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda
224
        # APIs in this thread.
L
Leo Chen 已提交
225
        core.set_current_thread_name("Dataloader_" + str(id(self)))
226 227 228 229 230 231 232 233
        _set_expected_place(legacy_expected_place)

        while not self._thread_done_event.is_set():
            try:
                indices = next(self._sampler_iter)

                # read data from dataset in mini-batch
                # with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()):
234
                # read data from dataset in mini-batch
235 236 237
                batch = self._dataset_fetcher.fetch(
                    indices, self._thread_done_event
                )
238 239 240 241
            except StopIteration:
                self._exit_thread_expectedly()
                return

242 243
            if batch is None or self._thread_done_event.is_set():
                break
244 245 246 247

            # flat batch and record structure infos
            batch, structure = _flatten_batch(batch)
            self._structure_infos.append(structure)
248

249 250
            if self._thread_done_event.is_set():
                break
251

252
            try:
253 254 255
                # pack as LoDTensorArray
                array = core.LoDTensorArray()
                for slot in batch:
W
wanghuancoder 已提交
256
                    if isinstance(slot, (paddle.Tensor, core.eager.Tensor)):
K
Kaipeng Deng 已提交
257 258
                        slot = slot.value().get_tensor()
                    elif not isinstance(slot, core.LoDTensor):
259 260 261 262 263 264
                        tmp = core.LoDTensor()
                        tmp.set(slot, core.CPUPlace())
                        slot = tmp

                    array.append(slot)

265 266
                if self._thread_done_event.is_set():
                    break
267

268 269 270 271
                try:
                    self._blocking_queue.push(array)
                except:
                    self._exit_thread_expectedly()
272

273
            except Exception as e:
274
                self._exit_thread_unexpectedly()
275
                raise e
276 277

        self._exit_thread_expectedly()
278 279

    def __next__(self):
280 281 282
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterSingleProcess",
283 284
                event_type=profiler.TracerEventType.Dataloader,
            )
285
            trace_event.begin()
286
        try:
Z
Zhang Ting 已提交
287 288
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
289
            if in_dynamic_mode():
J
Jiabin Yang 已提交
290
                data = core.eager.read_next_tensor_list(
291 292
                    self._reader.read_next_list()[0]
                )
293
                data = _restore_batch(data, self._structure_infos.pop(0))
294
            else:
295
                # in static graph mode
姜永久 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
                if self._return_list:
                    data = self._reader.read_next_list()
                    for i in range(len(data)):
                        data[i] = data[i]._move_to_list()
                    structs = [
                        self._structure_infos.pop(0)
                        for _ in range(len(self._places))
                    ]
                    data = [_restore_batch(d, s) for d, s in zip(data, structs)]
                    # static graph organized data on multi-device with list, if
                    # place number is 1, there is only 1 device, extra the data
                    # from list for devices to be compatible with dygraph mode
                    if len(self._places) == 1:
                        data = data[0]
                else:
                    data = self._reader.read_next()
Z
Zhang Ting 已提交
312
            benchmark().after_reader()
313 314

            return data
315
        except StopIteration:
316
            self._reader.shutdown()
317
            self._try_shutdown_all()
318
            raise
C
chenjian 已提交
319
        finally:
320 321
            if in_profiler_mode():
                trace_event.end()
322

323 324 325
    def _shutdown_thread(self):
        if self._thread:
            self._thread_done_event.set()
326 327 328 329 330 331 332 333 334 335 336
            # NOTE: we wait for _thread exit for 3 seconds, if
            #       thread not exit normally, force kill it
            for _ in range(3):
                if self._thread.is_alive():
                    time.sleep(1)
                else:
                    break
            else:
                if self._thread is not threading.current_thread():
                    self._thread.join()

337
            self._thread = None
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    def _try_shutdown_all(self):
        if not self._shutdown:
            try:
                # # _blocking_queue in keep order mode holds sub-threads
                # # need to release thread resources on unexpected exit
                if self._blocking_queue:
                    self._blocking_queue.close()
                    self._blocking_queue = None
                # NOTE: blocking queue should be closed firstly for
                # blocking queue read may hang and _thread_done_event
                # cannot be checked
                self._shutdown_thread()
            finally:
                self._shutdown = True

354
    def __del__(self):
355
        self._try_shutdown_all()
356

357 358 359

class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
    def __init__(self, loader):
360
        super().__init__(loader)
361

K
Kaipeng Deng 已提交
362 363 364
        self._persistent_workers = loader._persistent_workers
        self._resume_worker_cnt = 0

365 366 367 368 369
        assert (
            self._num_workers > 0
        ), "Multi-process DataLoader " "invalid num_workers({})".format(
            self._num_workers
        )
370 371 372 373 374

        # subprocess wrokers' result queue
        self._data_queue = None

        # data get from _data_queue will be reordered by _rcvd_idx
375
        # for data order keeping, data index not equal _rcvd_idx
376
        # will be cached in _task_infos
377 378 379
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
380
        self._task_infos = {}
381
        self._structure_infos = []
382 383 384 385

        # indices outstand as _outstanding_capacity at first, and
        # blocking_queue capacity is also _outstanding_capacity.
        # _outstanding_capacity here to make sure each indices_queue
386 387
        # has at least "_prefetch_factor" indices, and outstanding batch cached
        # output data for at least "_prefetch_factor" iterations(Note that len(_places)
388
        # batches will be composed as an iteration output)
389
        self._outstanding_capacity = self._prefetch_factor * max(
390 391
            self._num_workers, len(self._places)
        )
392

393 394 395
        # see _try_put_indices
        self._thread_lock = threading.Lock()

396 397
        self._base_seed = np.random.randint(low=0, high=sys.maxsize)

398 399 400
        # Note(zhangbo): shm_buffer_size is used for MemoryMapAllocationPool.
        # MemoryMapAllocationPool is used to cache and reuse shm, thus reducing munmap in dataloader.
        # For more details, please see: paddle/fluid/memory/allocation/mmap_allocator.h
Z
zhangbo9674 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        if os.environ.get('FLAGS_use_shm_cache', False) in [
            1,
            '1',
            True,
            'True',
            'true',
        ]:
            try:
                self._worker_shm_buffer_size = (2 + 1) * len(self._dataset[0])
            except:
                self._worker_shm_buffer_size = 0
                warnings.warn(
                    "Setting the shm cache buffer size to 0, equivalent to not using the shm cache policy."
                )
        else:
416 417 418 419 420
            self._worker_shm_buffer_size = 0
        self._main_thread_shm_buffer_size = (
            (self._worker_shm_buffer_size) * 2 * self._num_workers
        )

421
        # init workers and indices queues and put 2 indices in each indices queue
422 423 424 425
        self._init_workers()
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

426 427 428
        self._init_thread()
        self._shutdown = False

429
    def _init_workers(self):
430
        from paddle.incubate import multiprocessing
431

432 433 434 435 436 437 438 439 440
        # multiprocess worker and indice queue list initial as empty
        self._workers = []
        self._worker_status = []
        self._indices_queues = []
        self._workers_idx_cycle = itertools.cycle(range(self._num_workers))

        # create data_queue for workers
        self._data_queue = multiprocessing.Queue()

441
        # event for workers and thread, thread event is only need
442 443 444 445 446 447
        # in multi-processing mode
        self._workers_done_event = multiprocessing.Event()
        self._thread_done_event = threading.Event()

        for i in range(self._num_workers):
            indices_queue = multiprocessing.Queue()
448
            indices_queue.cancel_join_thread()
449 450
            self._indices_queues.append(indices_queue)
            worker = multiprocessing.Process(
451
                target=_worker_loop,
452 453 454 455 456 457 458 459 460 461 462 463 464 465
                args=(
                    self._dataset,
                    self._dataset_kind,
                    indices_queue,
                    self._data_queue,
                    self._workers_done_event,
                    self._auto_collate_batch,
                    self._collate_fn,
                    self._drop_last,
                    self._worker_init_fn,
                    i,
                    self._num_workers,
                    self._use_shared_memory,
                    self._base_seed,
466
                    self._worker_shm_buffer_size,
467 468
                ),
            )
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
            worker.daemon = True
            worker.start()
            self._workers.append(worker)
            self._worker_status.append(True)

        core._set_process_pids(id(self), tuple(w.pid for w in self._workers))
        _set_SIGCHLD_handler()

    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except:
                    self._data_queue.cancel_join_thread()
                    self._data_queue.close()
                    break

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
494
        # if only 1 place, do not need to keep order
495
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
496 497
            core.Variable(), self._outstanding_capacity, len(self._places) > 1
        )
498 499 500
        core._set_max_memory_map_allocation_pool_size(
            self._main_thread_shm_buffer_size
        )
501
        self._reader = core.create_py_reader(
502 503 504 505 506 507 508 509 510 511
            self._blocking_queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_buffer_reader,
            True,
            self._pin_memory,
        )
512 513

        self._thread_done_event = threading.Event()
K
Kaipeng Deng 已提交
514
        # thread event is only need in multi-processing mode
515 516 517
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(),)
        )
518 519 520
        self._thread.daemon = True
        self._thread.start()

K
Kaipeng Deng 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    def _reset(self):
        # resume iteration in following steps
        # 1. Resume workers, clear worker caches
        # put _ResumeIteration to all worker as resume iteration flag
        with self._thread_lock:
            self._resume_worker_cnt = self._num_workers
            for worker_id in range(self._num_workers):
                self._indices_queues[worker_id].put(_ResumeIteration())
                self._batches_outstanding += 1
        # all flag will be check in _thread_loop, simply wait here
        while self._resume_worker_cnt > 0:
            time.sleep(0.5)

        # 2. clear blocking_queue caches
        # in order not to restart the thread, we just clear
        # the blocking_queue cachees instead of recreating one
        while self._blocking_queue.size() >= len(self._places):
538
            if in_dynamic_mode():
J
Jiabin Yang 已提交
539
                data = core.eager.read_next_tensor_list(
540 541
                    self._reader.read_next_list()[0]
                )
K
Kaipeng Deng 已提交
542
            else:
姜永久 已提交
543
                if self._return_list:
J
Jiabin Yang 已提交
544 545 546
                    self._reader.read_next_list()
                else:
                    data = self._reader.read_next()
K
Kaipeng Deng 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

        # 3. reset all states
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
        self._task_infos = {}
        self._structure_infos = []

        # set all worker status available
        self._worker_status = [True] * self._num_workers

        # 4. reset _sampler_iter and put prefetch indices to start next epoch
        # init workers and indices queues and put 2 indices in each indices queue
        self._sampler_iter = iter(self._index_sampler)
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

    def _shutdown_worker(self, worker_id, shutdown=False):
565 566 567
        if self._worker_status[worker_id] or (
            self._persistent_workers and shutdown
        ):
568 569 570
            self._indices_queues[worker_id].put(None)
            self._worker_status[worker_id] = False

571
    def _try_shutdown_all(self, timeout=None):
572 573 574 575 576 577 578 579 580 581
        if not self._shutdown:
            try:
                self._exit_thread_expectedly()
                self._clear_and_remove_data_queue()

                # set _workers_done_event should be set before put None
                # to indices_queue, workers wll exit on reading None from
                # indices_queue
                self._workers_done_event.set()
                for i in range(self._num_workers):
K
Kaipeng Deng 已提交
582
                    self._shutdown_worker(i, shutdown=True)
583

584 585 586 587 588 589
                if not self._shutdown:
                    for w in self._workers:
                        w.join(timeout)
                    for q in self._indices_queues:
                        q.cancel_join_thread()
                        q.close()
590 591 592 593
            finally:
                core._erase_process_pids(id(self))
                self._shutdown = True

594
    def _thread_loop(self, legacy_expected_place):
595
        # NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
596 597
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
598
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda
599
        # APIs in this thread.
L
Leo Chen 已提交
600
        core.set_current_thread_name("Dataloader_" + str(id(self)))
601 602
        _set_expected_place(legacy_expected_place)

603 604 605 606 607 608
        while not self._thread_done_event.is_set():
            batch = self._get_data()
            if not self._thread_done_event.is_set():
                if batch is None:
                    self._exit_thread_expectedly()
                else:
K
Kaipeng Deng 已提交
609 610 611 612
                    if isinstance(batch, _ResumeIteration):
                        assert self._resume_worker_cnt > 0
                        self._resume_worker_cnt -= 1
                        continue
613 614 615 616 617 618 619 620 621 622
                    try:
                        # pack as LoDTensorArray
                        array = core.LoDTensorArray()
                        if self._use_shared_memory:
                            for tensor in batch:
                                array.append(tensor)
                        else:
                            # LoDTensor not in shared memory is not
                            # serializable, cannot be create in workers
                            for slot in batch:
623
                                if isinstance(
624 625
                                    slot, (paddle.Tensor, core.eager.Tensor)
                                ):
K
Kaipeng Deng 已提交
626 627
                                    slot = slot.value().get_tensor()
                                elif not isinstance(slot, core.LoDTensor):
628 629 630 631 632 633 634
                                    tmp = core.LoDTensor()
                                    tmp.set(slot, core.CPUPlace())
                                    slot = tmp
                                array.append(slot)

                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
K
Kaipeng Deng 已提交
635
                    except Exception as e:
636
                        self._exit_thread_unexpectedly()
637
                        raise e
638 639 640 641 642
                    finally:
                        self._rcvd_idx += 1

    def _get_data(self):
        while not self._thread_done_event.is_set():
643 644 645
            # For IterableDataset, batch indices is generated infinitely
            # for each worker to raise StopIteration, but a StopIteration
            # raising process will discard a batch indices which is count
646
            # in _send_idx but will not increase _rcvd_idx, so we check
647 648
            # whether the worker is still alive here to skip the discarded
            # batch indices and increase _rcvd_idx
649 650 651
            if self._dataset_kind == _DatasetKind.ITER:
                while self._rcvd_idx < self._send_idx:
                    info = self._task_infos[self._rcvd_idx]
652
                    if len(info) == 3 or self._worker_status[info[0]]:
653 654 655 656 657
                        break
                    del self._task_infos[self._rcvd_idx]
                    self._rcvd_idx += 1
                    self._batches_outstanding -= 1
                else:
658 659 660 661 662 663 664 665
                    # NOTE: when _rcvd_idx catch up _send_idx, which means
                    #       one of following:
                    #       1. all 2 * num_workers batches have been loaded
                    #          and stored in _blocking_queue
                    #       2. all data drained
                    #       we need to let _thread blocking at _data_queue
                    #       get_data to inoccupy CPU, otherwise may occupy
                    #       CPU time for model running
K
Kaipeng Deng 已提交
666 667 668 669 670 671 672 673 674
                    # NOTE: in persistent workers mode, do not check data
                    #       drained here, simply let it go to _data_queue
                    #       reading to get _ResumeIteration
                    if not self._persistent_workers:
                        # NOTE: _rcvd_idx and _send_idx only record batches among
                        #       workers, if batches among workers drained, there
                        #       may also be data in blocking queue
                        if self._batches_outstanding < len(self._places):
                            return None
675

676 677 678 679
            if (
                self._rcvd_idx in self._task_infos
                and len(self._task_infos[self._rcvd_idx]) == 3
            ):
680 681 682
                info = self._task_infos.pop(self._rcvd_idx)
                self._structure_infos.append(info[2])
                return info[1]
683

684 685 686
            try:
                # [ avoid hang ]: main process may blocking at _reader.read_next when
                # KeyboardInterrupt, we do following tradeoff:
687
                # 1. get data with timeout, MP_STATUS_CHECK_INTERVAL(5s) as timeout
688 689 690 691 692 693 694
                #    default, if KeyboardInterrupt blocking, failed workers will be
                #    checked and raise RuntimeError to quit DataLoader in timeout
                #    exception handling.
                # 2. if get data timeout and check workers all alive, continue to
                #    get data again
                data = self._data_queue.get(timeout=self._timeout)
            except Exception as e:
695 696 697 698 699
                # check if thread done event set when waiting data
                if self._thread_done_event.is_set():
                    continue

                # check failed workers
700 701 702 703 704 705 706 707
                failed_workers = []
                for i, w in enumerate(self._workers):
                    if self._worker_status[i] and not w.is_alive():
                        failed_workers.append(w)
                        self._shutdown_worker(i)
                if len(failed_workers) > 0:
                    self._exit_thread_unexpectedly()
                    pids = ', '.join(str(w.pid) for w in failed_workers)
708 709 710 711
                    raise RuntimeError(
                        "DataLoader {} workers exit unexpectedly, "
                        "pids: {}".format(len(failed_workers), pids)
                    )
712 713 714 715 716 717 718

                # get(timeout) will call _poll(timeout) and may raise IOError
                if isinstance(e, queue.Empty) or isinstance(e, IOError):
                    # continue on timeout to keep getting data from queue
                    continue

                self._exit_thread_unexpectedly()
719 720 721 722
                logging.error(
                    "DataLoader reader thread failed({}) to read data from "
                    "workers' result queue.".format(e)
                )
723
                raise e
724
            else:
725
                if self._dataset_kind == _DatasetKind.ITER and isinstance(
726 727
                    data, _IterableDatasetStopIteration
                ):
728 729 730 731 732
                    # if a worker get StopIteraion, we shutdown this worker,
                    # note that this batch indices to trigger StopIteration
                    # is discard, outstanding batch number should be decrease
                    # and another indices should be put for other workers
                    # may still working.
K
Kaipeng Deng 已提交
733 734 735 736 737
                    if self._persistent_workers:
                        self._worker_status[data.worker_id] = False
                    else:
                        self._shutdown_worker(data.worker_id)
                        self._batches_outstanding -= 1
738 739 740
                    self._try_put_indices()
                    continue

741
                idx, batch, structure = data
K
Kaipeng Deng 已提交
742

743 744 745 746 747
                if (
                    isinstance(idx, _ResumeIteration)
                    and batch is None
                    and structure is None
                ):
K
Kaipeng Deng 已提交
748 749
                    return idx

750 751 752 753
                if isinstance(batch, _WorkerException):
                    self._exit_thread_unexpectedly()
                    batch.reraise()

754
                if idx == self._rcvd_idx:
755
                    del self._task_infos[idx]
756
                    self._structure_infos.append(structure)
757 758
                    return batch
                else:
759
                    self._task_infos[idx] += (batch, structure)
760 761 762
                    continue

    def _try_put_indices(self):
763 764 765
        assert (
            self._batches_outstanding <= self._outstanding_capacity
        ), "too many indices have been put to queue"
766 767 768 769 770 771 772 773 774 775 776 777 778 779
        # In multi-process mode for IterableDataset, _try_put_indices will
        # be called both in main process(for our implement has blocking queue,
        # and blocking queue read is in main process) and thread, which may
        # cause error following error
        #   1. "ValueError: generator already executing" in next(self._sampler_iter)
        #   2. re-enter in increase _send_idx
        # add a lock for threading save, for _try_put_indices is only a slight
        # function which is not in data reading pipeline, this lock almost no
        # influence on performance
        with self._thread_lock:
            try:
                indices = next(self._sampler_iter)
            except StopIteration:
                return
780

781 782 783 784 785 786
            for i in range(self._num_workers):
                worker_idx = next(self._workers_idx_cycle)
                if self._worker_status[worker_idx]:
                    break
            else:
                return
787

788
            self._indices_queues[worker_idx].put((self._send_idx, indices))
789
            self._task_infos[self._send_idx] = (worker_idx,)
790 791
            self._batches_outstanding += 1
            self._send_idx += 1
792 793 794 795

    def __del__(self):
        self._try_shutdown_all()

796 797 798
    def _shutdown_on_exit(self):
        self._try_shutdown_all(1)

799
    def __next__(self):
800 801 802
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterMultiProcess",
803 804
                event_type=profiler.TracerEventType.Dataloader,
            )
805
            trace_event.begin()
806
        try:
Z
Zhang Ting 已提交
807 808
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
809 810 811 812 813 814 815 816
            # _batches_outstanding here record the total batch data number
            # in 'from after _try_put_indices to beforeoutput data', this
            # value should be _outstanding_capacity if data is not drained,
            # if _batches_outstanding is less than _places number, there are
            # no enough data to generate next output, close blocking_queue and
            # set _thread_done_event here, py_reader will raise StopIteration,
            # end workers and indices_queues in StopIteration handling
            if self._batches_outstanding < len(self._places):
K
Kaipeng Deng 已提交
817 818 819 820 821
                if self._persistent_workers:
                    raise StopIteration
                else:
                    self._thread_done_event.set()
                    self._blocking_queue.close()
822

823
            if in_dynamic_mode():
J
Jiabin Yang 已提交
824
                data = core.eager.read_next_tensor_list(
825 826
                    self._reader.read_next_list()[0]
                )
827
                data = _restore_batch(data, self._structure_infos.pop(0))
828
            else:
姜永久 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842
                if self._return_list:
                    data = self._reader.read_next_list()
                    for i in range(len(data)):
                        data[i] = data[i]._move_to_list()
                    structs = [
                        self._structure_infos.pop(0)
                        for _ in range(len(self._places))
                    ]
                    data = [_restore_batch(d, s) for d, s in zip(data, structs)]
                    # static graph organized data on multi-device with list, if
                    # place number is 1, there is only 1 device, extra the data
                    # from list for devices to be compatible with dygraph mode
                    if len(self._places) == 1:
                        data = data[0]
843
                else:
姜永久 已提交
844
                    data = self._reader.read_next()
845
            self._on_output_batch()
Z
Zhang Ting 已提交
846
            benchmark().after_reader()
847 848
            return data
        except StopIteration:
K
Kaipeng Deng 已提交
849 850 851
            if not self._persistent_workers:
                self._reader.shutdown()
                self._try_shutdown_all()
852
            raise
C
chenjian 已提交
853
        finally:
854 855
            if in_profiler_mode():
                trace_event.end()
856 857 858 859 860

    def _on_output_batch(self):
        for _ in range(len(self._places)):
            self._batches_outstanding -= 1
            self._try_put_indices()