cmd_argument_en.html 25.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
11
  <title>Command-line arguments &mdash; PaddlePaddle  documentation</title>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
  

  
  

  

  
  
    

  

  
  
27
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
28 29 30 31 32
  

  
  
        <link rel="index" title="Index"
33 34 35 36 37 38
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/>
        <link rel="up" title="Distributed Training" href="index_en.html"/>
        <link rel="next" title="Use different clusters" href="multi_cluster/index_en.html"/>
        <link rel="prev" title="Preparations" href="preparations_en.html"/> 
39 40

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
41
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
42 43 44 45 46 47 48 49 50 51 52 53 54
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
55
  <script src="../../_static/js/modernizr.min.js"></script>
56 57 58 59 60 61 62 63

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
64
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
65 66 67
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
87 88 89 90
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_en.html">Install and Build</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_en.html">Development</a></li>
91
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_en.html">FAQ</a></li>
92 93 94 95
</ul>

        
<div role="search">
96
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
113 114
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/quickstart_en.html">Quick Start</a></li>
115
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/concepts/use_concepts_en.html">Basic Concept</a></li>
116 117
</ul>
</li>
118
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_en.html">Install and Build</a><ul>
119
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/pip_install_en.html">Install using pip</a></li>
120 121
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/build_from_source_en.html">Build from Sources</a></li>
122 123
</ul>
</li>
124
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">HOW TO</a><ul class="current">
125 126 127 128 129 130
<li class="toctree-l2"><a class="reference internal" href="../cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
131 132 133 134
<li class="toctree-l2 current"><a class="reference internal" href="index_en.html">Distributed Training</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="preparations_en.html">Preparations</a></li>
<li class="toctree-l3 current"><a class="current reference internal" href="#">Command-line arguments</a></li>
<li class="toctree-l3"><a class="reference internal" href="multi_cluster/index_en.html">Use different clusters</a><ul>
135 136 137 138
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/fabric_en.html">Fabric</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/openmpi_en.html">OpenMPI</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/k8s_en.html">Kubernetes</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/k8s_aws_en.html">Kubernetes on AWS</a></li>
139 140
</ul>
</li>
141 142 143 144
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../rnn/rnn_config_en.html">RNN Configuration</a></li>
145 146 147
<li class="toctree-l3"><a class="reference internal" href="../rnn/recurrent_group_en.html">Recurrent Group Tutorial</a></li>
<li class="toctree-l3"><a class="reference internal" href="../rnn/hierarchical_layer_en.html">Layers supporting hierarchical sequence as input</a></li>
<li class="toctree-l3"><a class="reference internal" href="../rnn/hrnn_rnn_api_compare_en.html">API comparision between RNN and hierarchical RNN</a></li>
148 149 150 151 152 153
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_en.html">Development</a><ul>
154
<li class="toctree-l2"><a class="reference internal" href="../../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
155
<li class="toctree-l2"><a class="reference internal" href="../../dev/write_docs_en.html">Contribute Documentation</a></li>
156 157
</ul>
</li>
158 159 160 161 162 163 164 165
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_en.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../faq/build_and_install/index_en.html">Install, Build and Unit test</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/model/index_en.html">Model Configuration</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/parameter/index_en.html">Parameter Setting</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/local/index_en.html">Local Training and Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/cluster/index_en.html">Cluster Training and Prediction</a></li>
</ul>
</li>
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
186 187 188
        <li><a href="../index_en.html">HOW TO</a> > </li>
      
        <li><a href="index_en.html">Distributed Training</a> > </li>
189
      
190
    <li>Command-line arguments</li>
191 192 193 194 195 196 197 198
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
199 200 201
  <div class="section" id="command-line-arguments">
<span id="command-line-arguments"></span><h1>Command-line arguments<a class="headerlink" href="#command-line-arguments" title="Permalink to this headline"></a></h1>
<p>We&#8217;ll take <code class="docutils literal"><span class="pre">doc/howto/cluster/src/word2vec</span></code> as an example to introduce distributed training using PaddlePaddle v2 API.</p>
202
<div class="section" id="starting-parameter-server">
203
<span id="starting-parameter-server"></span><h2>Starting parameter server<a class="headerlink" href="#starting-parameter-server" title="Permalink to this headline"></a></h2>
204
<p>Type the below command to start a parameter server which will wait for trainers to connect:</p>
205
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ paddle pserver --port<span class="o">=</span><span class="m">7164</span> --ports_num<span class="o">=</span><span class="m">1</span> --ports_num_for_sparse<span class="o">=</span><span class="m">1</span> --num_gradient_servers<span class="o">=</span><span class="m">1</span> --nics<span class="o">=</span>eth0
206 207 208
</pre></div>
</div>
<p>If you wish to run parameter servers in background, and save a log file, you can type:</p>
209
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ stdbuf -oL /usr/bin/nohup paddle pserver --port<span class="o">=</span><span class="m">7164</span> --ports_num<span class="o">=</span><span class="m">1</span> --ports_num_for_sparse<span class="o">=</span><span class="m">1</span> --num_gradient_servers<span class="o">=</span><span class="m">1</span> --nics<span class="o">=</span>eth0 <span class="p">&amp;</span>&gt; pserver.log <span class="p">&amp;</span>
210 211
</pre></div>
</div>
212 213 214 215
<p>Parameter Description</p>
<ul class="simple">
<li>port: <strong>required, default 7164</strong>, port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput.</li>
<li>ports_num: <strong>required, default 1</strong>, total number of ports will listen on.</li>
216
<li>ports_num_for_sparse: <strong>required, default 0</strong>, number of ports which serves sparse parameter update.</li>
217
<li>num_gradient_servers: <strong>required, default 1</strong>, total number of gradient servers.</li>
218
<li>nics: <strong>optional, default xgbe0,xgbe1</strong>, network device name which paramter server will listen on.</li>
219
</ul>
220 221
</div>
<div class="section" id="starting-trainer">
222
<span id="starting-trainer"></span><h2>Starting trainer<a class="headerlink" href="#starting-trainer" title="Permalink to this headline"></a></h2>
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
<p>Type the command below to start the trainer(name the file whatever you want, like &#8220;train.py&#8221;)</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ python train.py
</pre></div>
</div>
<p>Trainers&#8217; network need to be connected with parameter servers&#8217; network to finish the job. Trainers need to know port and IPs to locate parameter servers. You can pass arguments to trainers through <a class="reference external" href="https://en.wikipedia.org/wiki/Environment_variable">environment variables</a> or pass to <code class="docutils literal"><span class="pre">paddle.init()</span></code> function. Arguments passed to the <code class="docutils literal"><span class="pre">paddle.init()</span></code> function will overwrite environment variables.</p>
<p>Use environment viriables:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">PADDLE_INIT_USE_GPU</span><span class="o">=</span>False
<span class="nb">export</span> <span class="nv">PADDLE_INIT_TRAINER_COUNT</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORT</span><span class="o">=</span><span class="m">7164</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORTS_NUM</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORTS_NUM_FOR_SPARSE</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_NUM_GRADIENT_SERVERS</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_TRAINER_ID</span><span class="o">=</span><span class="m">0</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PSERVERS</span><span class="o">=</span><span class="m">127</span>.0.0.1
python train.py
</pre></div>
</div>
<p>Pass arguments:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">paddle</span><span class="o">.</span><span class="n">init</span><span class="p">(</span>
        <span class="n">use_gpu</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
        <span class="n">trainer_count</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">port</span><span class="o">=</span><span class="mi">7164</span><span class="p">,</span>
        <span class="n">ports_num</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">ports_num_for_sparse</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">num_gradient_servers</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">trainer_id</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
        <span class="n">pservers</span><span class="o">=</span><span class="s2">&quot;127.0.0.1&quot;</span><span class="p">)</span>
</pre></div>
</div>
252 253 254
<p>Parameter Description</p>
<ul class="simple">
<li>use_gpu: <strong>optional, default False</strong>, set to &#8220;True&#8221; to enable GPU training.</li>
255
<li>trainer_count: <strong>required, default 1</strong>, number of threads in current trainer.</li>
256 257
<li>port: <strong>required, default 7164</strong>, port to connect to parameter server.</li>
<li>ports_num: <strong>required, default 1</strong>, number of ports for communication.</li>
258
<li>ports_num_for_sparse: <strong>required, default 0</strong>, number of ports for sparse type caculation.</li>
259
<li>num_gradient_servers: <strong>required, default 1</strong>, number of trainers in current job.</li>
260 261 262
<li>trainer_id: <strong>required, default 0</strong>, ID for every trainer, start from 0.</li>
<li>pservers: <strong>required, default 127.0.0.1</strong>, list of IPs of parameter servers, separated by &#8221;,&#8221;.</li>
</ul>
263 264
</div>
<div class="section" id="prepare-training-dataset">
265
<span id="prepare-training-dataset"></span><h2>Prepare Training Dataset<a class="headerlink" href="#prepare-training-dataset" title="Permalink to this headline"></a></h2>
266 267 268 269 270 271 272 273 274 275
<p>Here&#8217;s some example code <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py">prepare.py</a>, it will download public <code class="docutils literal"><span class="pre">imikolov</span></code> dataset and split it into multiple files according to job parallelism(trainers count). Modify <code class="docutils literal"><span class="pre">SPLIT_COUNT</span></code> at the begining of <code class="docutils literal"><span class="pre">prepare.py</span></code> to change the count of output files.</p>
<p>In the real world, we often use <code class="docutils literal"><span class="pre">MapReduce</span></code> job&#8217;s output as training data, so there will be lots of files. You can use <code class="docutils literal"><span class="pre">mod</span></code> to assign training file to trainers:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">os</span>
<span class="n">train_list</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">flist</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">listdir</span><span class="p">(</span><span class="s2">&quot;/train_data/&quot;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="n">flist</span><span class="p">:</span>
  <span class="n">suffix</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">f</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">&quot;-&quot;</span><span class="p">)[</span><span class="mi">1</span><span class="p">])</span>
  <span class="k">if</span> <span class="n">suffix</span> <span class="o">%</span> <span class="n">TRAINER_COUNT</span> <span class="o">==</span> <span class="n">TRAINER_ID</span><span class="p">:</span>
    <span class="n">train_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
</pre></div>
276
</div>
277
<p>Example code <code class="docutils literal"><span class="pre">prepare.py</span></code> will split training data and testing data into 3 files with digital suffix like <code class="docutils literal"><span class="pre">-00000</span></code>, <code class="docutils literal"><span class="pre">-00001</span></code> and<code class="docutils literal"><span class="pre">-00002</span></code>:</p>
278 279 280 281 282 283 284 285
<div class="highlight-bash"><div class="highlight"><pre><span></span>train.txt
train.txt-00000
train.txt-00001
train.txt-00002
test.txt
test.txt-00000
test.txt-00001
test.txt-00002
286 287 288 289 290 291
</pre></div>
</div>
<p>When job started, every trainer needs to get it&#8217;s own part of data. In some distributed systems a storage service will be provided, so the date under that path can be accessed by all the trainer nodes. Without the storage service, you must copy the training data to each trainer node.</p>
<p>Different training jobs may have different data format and <code class="docutils literal"><span class="pre">reader()</span></code> function, developers may need to write different data prepare scripts and <code class="docutils literal"><span class="pre">reader()</span></code> functions for their job.</p>
</div>
<div class="section" id="prepare-training-program">
292
<span id="prepare-training-program"></span><h2>Prepare Training program<a class="headerlink" href="#prepare-training-program" title="Permalink to this headline"></a></h2>
293 294
<p>We&#8217;ll create a <em>workspace</em> directory on each node, storing your training program, dependencies, mounted or downloaded dataset directory.</p>
<p>Your workspace may looks like:</p>
295 296 297 298 299 300 301 302 303 304 305 306
<div class="highlight-bash"><div class="highlight"><pre><span></span>.
<span class="p">|</span>-- my_lib.py
<span class="p">|</span>-- word_dict.pickle
<span class="p">|</span>-- train.py
<span class="p">|</span>-- train_data_dir/
<span class="p">|</span>   <span class="p">|</span>-- train.txt-00000
<span class="p">|</span>   <span class="p">|</span>-- train.txt-00001
<span class="p">|</span>   <span class="p">|</span>-- train.txt-00002
<span class="sb">`</span>-- test_data_dir/
    <span class="p">|</span>-- test.txt-00000
    <span class="p">|</span>-- test.txt-00001
    <span class="sb">`</span>-- test.txt-00002
307 308
</pre></div>
</div>
309 310 311 312 313
<ul>
<li><p class="first"><code class="docutils literal"><span class="pre">my_lib.py</span></code>: user defined libraries, like PIL libs. This is optional.</p>
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">word_dict.pickle</span></code>: dict file for training word embeding.</p>
</li>
314
<li><p class="first"><code class="docutils literal"><span class="pre">train.py</span></code>: training program. Sample code: <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py">api_train_v2_cluster.py</a>. <strong><em>NOTE:</em></strong> You may need to modify the head part of <code class="docutils literal"><span class="pre">train.py</span></code> when using different cluster platform to retrive configuration environment variables:</p>
315 316 317 318 319
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cluster_train_file</span> <span class="o">=</span> <span class="s2">&quot;./train_data_dir/train/train.txt&quot;</span>
<span class="n">cluster_test_file</span> <span class="o">=</span> <span class="s2">&quot;./test_data_dir/test/test.txt&quot;</span>
<span class="n">node_id</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">getenv</span><span class="p">(</span><span class="s2">&quot;OMPI_COMM_WORLD_RANK&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">node_id</span><span class="p">:</span>
    <span class="k">raise</span> <span class="ne">EnvironmentError</span><span class="p">(</span><span class="s2">&quot;must provied OMPI_COMM_WORLD_RANK&quot;</span><span class="p">)</span>
320 321
</pre></div>
</div>
322 323 324 325 326 327 328
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">train_data_dir</span></code>: containing training data. Mount from storage service or copy trainning data to here.</p>
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">test_data_dir</span></code>: containing testing data.</p>
</li>
</ul>
</div>
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
<div class="section" id="async-sgd-update">
<span id="async-sgd-update"></span><h2>Async SGD Update<a class="headerlink" href="#async-sgd-update" title="Permalink to this headline"></a></h2>
<p>We can set some parameters of the optimizer to make it support async SGD update.
For example, we can set the <code class="docutils literal"><span class="pre">is_async</span></code> and <code class="docutils literal"><span class="pre">async_lagged_grad_discard_ratio</span></code> of the <code class="docutils literal"><span class="pre">AdaGrad</span></code> optimizer:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">adagrad</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">AdaGrad</span><span class="p">(</span>
    <span class="n">is_async</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span>
    <span class="n">async_lagged_grad_discard_ratio</span><span class="o">=</span><span class="mf">1.6</span><span class="p">,</span>
    <span class="n">learning_rate</span><span class="o">=</span><span class="mf">3e-3</span><span class="p">,</span>
    <span class="n">regularization</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">L2Regularization</span><span class="p">(</span><span class="mf">8e-4</span><span class="p">))</span>
</pre></div>
</div>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">is_async</span></code>: Is Async-SGD or not.</li>
<li><code class="docutils literal"><span class="pre">async_lagged_grad_discard_ratio</span></code>: For async SGD gradient commit control.
when <code class="docutils literal"><span class="pre">async_lagged_grad_discard_ratio</span> <span class="pre">*</span> <span class="pre">num_gradient_servers</span></code> commit passed,
current async gradient will be discard silently.</li>
</ul>
</div>
347 348 349 350 351 352 353 354 355
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
356
        <a href="multi_cluster/index_en.html" class="btn btn-neutral float-right" title="Use different clusters" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
357 358
      
      
359
        <a href="preparations_en.html" class="btn btn-neutral" title="Preparations" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
389
            URL_ROOT:'../../',
390 391 392
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
393 394
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
395 396
        };
    </script>
397 398 399
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
400
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
401 402 403 404 405
       
  

  
  
406
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
407 408 409 410
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
411
  <script src="../../_static/js/paddle_doc_init.js"></script> 
412 413

</body>
414
</html>