cmd_argument_en.html 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
11
  <title>Command-line arguments &mdash; PaddlePaddle  documentation</title>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
  

  
  

  

  
  
    

  

  
  
27
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
28 29 30 31 32
  

  
  
        <link rel="index" title="Index"
33 34 35 36 37 38
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/>
        <link rel="up" title="Distributed Training" href="index_en.html"/>
        <link rel="next" title="Use different clusters" href="multi_cluster/index_en.html"/>
        <link rel="prev" title="Preparations" href="preparations_en.html"/> 
39 40

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
41
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
42 43 44 45 46 47 48 49 50 51 52 53 54
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
55
  <script src="../../_static/js/modernizr.min.js"></script>
56 57 58 59 60 61 62 63

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
64
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
65 66 67
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
87 88 89 90
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_en.html">Install and Build</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_en.html">Development</a></li>
91 92 93 94
</ul>

        
<div role="search">
95
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
112 113
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/quickstart_en.html">Quick Start</a></li>
114 115
</ul>
</li>
116 117 118 119
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/build_from_source_en.html">Build from Sources</a></li>
120 121
</ul>
</li>
122
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">HOW TO</a><ul class="current">
123 124 125 126 127 128
<li class="toctree-l2"><a class="reference internal" href="../cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
129 130 131 132 133 134 135 136
<li class="toctree-l2 current"><a class="reference internal" href="index_en.html">Distributed Training</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="preparations_en.html">Preparations</a></li>
<li class="toctree-l3 current"><a class="current reference internal" href="#">Command-line arguments</a></li>
<li class="toctree-l3"><a class="reference internal" href="multi_cluster/index_en.html">Use different clusters</a><ul>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/fabric_en.html">Cluster Training Using Fabric</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/openmpi_en.html">Cluster Training Using OpenMPI</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/k8s_en.html">PaddlePaddle On Kubernetes</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
137 138
</ul>
</li>
139 140 141 142 143 144 145 146 147 148
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_en.html">Development</a><ul>
149
<li class="toctree-l2"><a class="reference internal" href="../../dev/new_layer_en.html">Write New Layers</a></li>
150
<li class="toctree-l2"><a class="reference internal" href="../../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
151
<li class="toctree-l2"><a class="reference internal" href="../../dev/write_docs_en.html">Contribute Documentation</a></li>
152 153
</ul>
</li>
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
174 175 176
        <li><a href="../index_en.html">HOW TO</a> > </li>
      
        <li><a href="index_en.html">Distributed Training</a> > </li>
177
      
178
    <li>Command-line arguments</li>
179 180 181 182 183 184 185 186
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
187 188 189
  <div class="section" id="command-line-arguments">
<span id="command-line-arguments"></span><h1>Command-line arguments<a class="headerlink" href="#command-line-arguments" title="Permalink to this headline"></a></h1>
<p>We&#8217;ll take <code class="docutils literal"><span class="pre">doc/howto/cluster/src/word2vec</span></code> as an example to introduce distributed training using PaddlePaddle v2 API.</p>
190
<div class="section" id="starting-parameter-server">
191
<span id="starting-parameter-server"></span><h2>Starting parameter server<a class="headerlink" href="#starting-parameter-server" title="Permalink to this headline"></a></h2>
192 193 194 195 196 197 198 199
<p>Type the below command to start a parameter server which will wait for trainers to connect:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ paddle pserver --port<span class="o">=</span><span class="m">7164</span> --ports_num<span class="o">=</span><span class="m">1</span> --ports_num_for_sparse<span class="o">=</span><span class="m">1</span> --num_gradient_servers<span class="o">=</span><span class="m">1</span>
</pre></div>
</div>
<p>If you wish to run parameter servers in background, and save a log file, you can type:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ stdbuf -oL /usr/bin/nohup paddle pserver --port<span class="o">=</span><span class="m">7164</span> --ports_num<span class="o">=</span><span class="m">1</span> --ports_num_for_sparse<span class="o">=</span><span class="m">1</span> --num_gradient_servers<span class="o">=</span><span class="m">1</span> <span class="p">&amp;</span>&gt; pserver.log
</pre></div>
</div>
200 201 202 203
<p>Parameter Description</p>
<ul class="simple">
<li>port: <strong>required, default 7164</strong>, port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput.</li>
<li>ports_num: <strong>required, default 1</strong>, total number of ports will listen on.</li>
204
<li>ports_num_for_sparse: <strong>required, default 0</strong>, number of ports which serves sparse parameter update.</li>
205 206
<li>num_gradient_servers: <strong>required, default 1</strong>, total number of gradient servers.</li>
</ul>
207 208
</div>
<div class="section" id="starting-trainer">
209
<span id="starting-trainer"></span><h2>Starting trainer<a class="headerlink" href="#starting-trainer" title="Permalink to this headline"></a></h2>
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
<p>Type the command below to start the trainer(name the file whatever you want, like &#8220;train.py&#8221;)</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ python train.py
</pre></div>
</div>
<p>Trainers&#8217; network need to be connected with parameter servers&#8217; network to finish the job. Trainers need to know port and IPs to locate parameter servers. You can pass arguments to trainers through <a class="reference external" href="https://en.wikipedia.org/wiki/Environment_variable">environment variables</a> or pass to <code class="docutils literal"><span class="pre">paddle.init()</span></code> function. Arguments passed to the <code class="docutils literal"><span class="pre">paddle.init()</span></code> function will overwrite environment variables.</p>
<p>Use environment viriables:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">PADDLE_INIT_USE_GPU</span><span class="o">=</span>False
<span class="nb">export</span> <span class="nv">PADDLE_INIT_TRAINER_COUNT</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORT</span><span class="o">=</span><span class="m">7164</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORTS_NUM</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORTS_NUM_FOR_SPARSE</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_NUM_GRADIENT_SERVERS</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_TRAINER_ID</span><span class="o">=</span><span class="m">0</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PSERVERS</span><span class="o">=</span><span class="m">127</span>.0.0.1
python train.py
</pre></div>
</div>
<p>Pass arguments:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">paddle</span><span class="o">.</span><span class="n">init</span><span class="p">(</span>
        <span class="n">use_gpu</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
        <span class="n">trainer_count</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">port</span><span class="o">=</span><span class="mi">7164</span><span class="p">,</span>
        <span class="n">ports_num</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">ports_num_for_sparse</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">num_gradient_servers</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">trainer_id</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
        <span class="n">pservers</span><span class="o">=</span><span class="s2">&quot;127.0.0.1&quot;</span><span class="p">)</span>
</pre></div>
</div>
239 240 241
<p>Parameter Description</p>
<ul class="simple">
<li>use_gpu: <strong>optional, default False</strong>, set to &#8220;True&#8221; to enable GPU training.</li>
242
<li>trainer_count: <strong>required, default 1</strong>, number of threads in current trainer.</li>
243 244
<li>port: <strong>required, default 7164</strong>, port to connect to parameter server.</li>
<li>ports_num: <strong>required, default 1</strong>, number of ports for communication.</li>
245
<li>ports_num_for_sparse: <strong>required, default 0</strong>, number of ports for sparse type caculation.</li>
246
<li>num_gradient_servers: <strong>required, default 1</strong>, number of trainers in current job.</li>
247 248 249
<li>trainer_id: <strong>required, default 0</strong>, ID for every trainer, start from 0.</li>
<li>pservers: <strong>required, default 127.0.0.1</strong>, list of IPs of parameter servers, separated by &#8221;,&#8221;.</li>
</ul>
250 251
</div>
<div class="section" id="prepare-training-dataset">
252
<span id="prepare-training-dataset"></span><h2>Prepare Training Dataset<a class="headerlink" href="#prepare-training-dataset" title="Permalink to this headline"></a></h2>
253 254 255 256 257 258 259 260 261 262
<p>Here&#8217;s some example code <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py">prepare.py</a>, it will download public <code class="docutils literal"><span class="pre">imikolov</span></code> dataset and split it into multiple files according to job parallelism(trainers count). Modify <code class="docutils literal"><span class="pre">SPLIT_COUNT</span></code> at the begining of <code class="docutils literal"><span class="pre">prepare.py</span></code> to change the count of output files.</p>
<p>In the real world, we often use <code class="docutils literal"><span class="pre">MapReduce</span></code> job&#8217;s output as training data, so there will be lots of files. You can use <code class="docutils literal"><span class="pre">mod</span></code> to assign training file to trainers:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">os</span>
<span class="n">train_list</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">flist</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">listdir</span><span class="p">(</span><span class="s2">&quot;/train_data/&quot;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="n">flist</span><span class="p">:</span>
  <span class="n">suffix</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">f</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">&quot;-&quot;</span><span class="p">)[</span><span class="mi">1</span><span class="p">])</span>
  <span class="k">if</span> <span class="n">suffix</span> <span class="o">%</span> <span class="n">TRAINER_COUNT</span> <span class="o">==</span> <span class="n">TRAINER_ID</span><span class="p">:</span>
    <span class="n">train_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
</pre></div>
263
</div>
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
<p>Example code <code class="docutils literal"><span class="pre">prepare.py</span></code> will split training data and testing data into 3 files with digital suffix like <code class="docutils literal"><span class="pre">-00000</span></code>, <code class="docutils literal"><span class="pre">-00001</span></code> and<code class="docutils literal"><span class="pre">-00002</span></code>:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">train</span><span class="o">.</span><span class="n">txt</span>
<span class="n">train</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00000</span>
<span class="n">train</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00001</span>
<span class="n">train</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00002</span>
<span class="n">test</span><span class="o">.</span><span class="n">txt</span>
<span class="n">test</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00000</span>
<span class="n">test</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00001</span>
<span class="n">test</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00002</span>
</pre></div>
</div>
<p>When job started, every trainer needs to get it&#8217;s own part of data. In some distributed systems a storage service will be provided, so the date under that path can be accessed by all the trainer nodes. Without the storage service, you must copy the training data to each trainer node.</p>
<p>Different training jobs may have different data format and <code class="docutils literal"><span class="pre">reader()</span></code> function, developers may need to write different data prepare scripts and <code class="docutils literal"><span class="pre">reader()</span></code> functions for their job.</p>
</div>
<div class="section" id="prepare-training-program">
279
<span id="prepare-training-program"></span><h2>Prepare Training program<a class="headerlink" href="#prepare-training-program" title="Permalink to this headline"></a></h2>
280 281
<p>We&#8217;ll create a <em>workspace</em> directory on each node, storing your training program, dependencies, mounted or downloaded dataset directory.</p>
<p>Your workspace may looks like:</p>
282
<div class="highlight-default"><div class="highlight"><pre><span></span>.
283 284 285 286 287 288 289 290 291 292 293
|-- my_lib.py
|-- word_dict.pickle
|-- train.py
|-- train_data_dir/
|   |-- train.txt-00000
|   |-- train.txt-00001
|   |-- train.txt-00002
`-- test_data_dir/
    |-- test.txt-00000
    |-- test.txt-00001
    `-- test.txt-00002
294 295
</pre></div>
</div>
296 297 298 299 300
<ul>
<li><p class="first"><code class="docutils literal"><span class="pre">my_lib.py</span></code>: user defined libraries, like PIL libs. This is optional.</p>
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">word_dict.pickle</span></code>: dict file for training word embeding.</p>
</li>
301
<li><p class="first"><code class="docutils literal"><span class="pre">train.py</span></code>: training program. Sample code: <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py">api_train_v2_cluster.py</a>. <strong><em>NOTE:</em></strong> You may need to modify the head part of <code class="docutils literal"><span class="pre">train.py</span></code> when using different cluster platform to retrive configuration environment variables:</p>
302 303 304 305 306
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cluster_train_file</span> <span class="o">=</span> <span class="s2">&quot;./train_data_dir/train/train.txt&quot;</span>
<span class="n">cluster_test_file</span> <span class="o">=</span> <span class="s2">&quot;./test_data_dir/test/test.txt&quot;</span>
<span class="n">node_id</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">getenv</span><span class="p">(</span><span class="s2">&quot;OMPI_COMM_WORLD_RANK&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">node_id</span><span class="p">:</span>
    <span class="k">raise</span> <span class="ne">EnvironmentError</span><span class="p">(</span><span class="s2">&quot;must provied OMPI_COMM_WORLD_RANK&quot;</span><span class="p">)</span>
307 308
</pre></div>
</div>
309 310 311 312 313 314 315
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">train_data_dir</span></code>: containing training data. Mount from storage service or copy trainning data to here.</p>
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">test_data_dir</span></code>: containing testing data.</p>
</li>
</ul>
</div>
316 317 318 319 320 321 322 323 324
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
325
        <a href="multi_cluster/index_en.html" class="btn btn-neutral float-right" title="Use different clusters" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
326 327
      
      
328
        <a href="preparations_en.html" class="btn btn-neutral" title="Preparations" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
358
            URL_ROOT:'../../',
359 360 361
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
362 363
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
364 365
        };
    </script>
366 367 368
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
369
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
370 371 372 373 374
       
  

  
  
375
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
376 377 378 379
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
380
  <script src="../../_static/js/paddle_doc_init.js"></script> 
381 382

</body>
383
</html>