profiler.py 38.3 KB
Newer Older
C
chenjian 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenjian 已提交
2
#
C
chenjian 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
C
chenjian 已提交
6
#
C
chenjian 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chenjian 已提交
8
#
C
chenjian 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
import datetime
import importlib
import json
C
chenjian 已提交
18 19 20 21 22 23 24
import os
import socket
from enum import Enum
from typing import Any, Callable, Iterable, Optional, Union
from warnings import warn

import paddle
25 26 27
from paddle.fluid.core import (
    ProfilerOptions,
    TracerEventType,
28
    _Profiler,
29
    disable_memory_recorder,
30
    disable_op_info_recorder,
31 32
    enable_memory_recorder,
    enable_op_info_recorder,
33
)
R
ronnywang 已提交
34
from paddle.profiler import utils
35 36

from .profiler_statistic import (
R
ronnywang 已提交
37
    SortedKeys,
38 39 40 41
    StatisticData,
    _build_table,
    gen_layer_flops,
)
Z
Zhang Ting 已提交
42
from .timer import benchmark
43
from .utils import RecordEvent, wrap_optimizers
C
chenjian 已提交
44 45


46 47 48 49
class SummaryView(Enum):
    r"""
    SummaryView define the summary view of different contents.

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    - **SummaryView.DeviceView** : The device summary view.

    - **SummaryView.OverView** : The overview summary view.

    - **SummaryView.ModelView** : The model summary view.

    - **SummaryView.DistributedView** : The distributed summary view.

    - **SummaryView.KernelView** : The kernel summary view.

    - **SummaryView.OperatorView** : The operator summary view.

    - **SummaryView.MemoryView** : The memory summary view.

    - **SummaryView.MemoryManipulationView** : The meomory manipulation summary view.

    - **SummaryView.UDFView** : The user defined summary view.
67 68 69 70 71 72 73 74 75 76 77 78
    """
    DeviceView = 0
    OverView = 1
    ModelView = 2
    DistributedView = 3
    KernelView = 4
    OperatorView = 5
    MemoryView = 6
    MemoryManipulationView = 7
    UDFView = 8


C
chenjian 已提交
79 80
class ProfilerState(Enum):
    r"""
C
chenjian 已提交
81
    ProfilerState is used to present the state of :ref:`Profiler <api_paddle_profiler_Profiler>` .
C
chenjian 已提交
82

C
chenjian 已提交
83
    The meaning of each ProfilerState is as following
C
chenjian 已提交
84

C
chenjian 已提交
85
    - **ProfilerState.CLOSED** : The profiler is closed, and no profiling data will be recorded.
C
chenjian 已提交
86

C
chenjian 已提交
87
    - **ProfilerState.READY** : The profiler is open, but the data will not be recorded. This state is used for reducing overhead influence when profiler starts.
C
chenjian 已提交
88

C
chenjian 已提交
89 90 91
    - **ProfilerState.RECORD** : The profiler is open, and the data will be recorded.

    - **ProfilerState.RECORD_AND_RETURN** : The profiler is open, and this state stands for the last batch of "RECORD" state in current profiling period. The collected data will be returned in this state.
C
chenjian 已提交
92 93 94 95
    """
    CLOSED = 0
    READY = 1
    RECORD = 2
C
chenjian 已提交
96
    RECORD_AND_RETURN = 3  # the last step of RECORD
C
chenjian 已提交
97 98 99 100


class ProfilerTarget(Enum):
    r"""
F
fwenguang 已提交
101
    ProfilerTarget is used to specify target device for :ref:`profiling <api_paddle_profiler_Profiler>` . Only CPU, GPU and MLU are supported currently.
C
chenjian 已提交
102

C
chenjian 已提交
103 104 105 106 107
    The meaning of each ProfilerState is as following

    - **ProfilerTarget.CPU** : Profile events on CPU.

    - **ProfilerTarget.GPU** : Profile events on GPU.
F
fwenguang 已提交
108 109

    - **ProfilerTarget.MLU** : Profile events on MLU.
C
chenjian 已提交
110 111 112
    """
    CPU = 0
    GPU = 1
F
fwenguang 已提交
113
    MLU = 2
114
    CUSTOM_DEVICE = 3
C
chenjian 已提交
115 116


117 118 119 120 121 122
def make_scheduler(
    *,
    closed: int,
    ready: int,
    record: int,
    repeat: int = 0,
123
    skip_first: int = 0,
124
) -> Callable:
C
chenjian 已提交
125
    r"""
C
chenjian 已提交
126
    Return a scheduler function, which scheduler the :ref:`state <api_paddle_profiler_ProfilerState>` according to the setting.
C
chenjian 已提交
127 128
    The state transform confirms to:

C
chenjian 已提交
129 130 131 132 133 134 135 136
    .. code-block:: text

        (CLOSED)  (CLOSED)    (CLOSED)  (READY)    (RECORD,last RETURN)      (CLOSED)
        START -> skip_first -> closed -> ready    ->    record       ->      END
                                |                        |
                                |                        | (if has_repeated < repeat)
                                - - - - - - - - - - - -
        Note that repeat <= 0 means the cycle will continue until the profiler exits.
C
chenjian 已提交
137

C
chenjian 已提交
138
    Args:
C
chenjian 已提交
139
        closed(int): The number of steps in state ProfilerState.CLOSED.
C
chenjian 已提交
140
        ready(int):  The number of steps in state ProfilerState.READY.
C
chenjian 已提交
141 142 143
        record(int): The number of steps in state ProfilerState.RECORD, and the state in last step will be set as ProfilerState.RECORD_AND_RETURN.
        repeat(int, optional): The number of cycles to repeat above state transform. Default value is 0, which means it will repeat this cycle until profiler exits.
        skip_first(int, optional): The number of first steps to drop, not participate in the state transform, and at ProfilerState.CLOSED state. Default value is 0.
C
chenjian 已提交
144 145

    Returns:
146
        A scheduler function, conforms to above state transform setting. The function will takes one parameter `step_num`, and returns corresponding ProfilerState.
C
chenjian 已提交
147 148

    Examples:
149
        1. profiling range [2, 5].
C
chenjian 已提交
150

151
        Assume batch 0: closed, batch 1: ready, batch [2, 5] record.
C
chenjian 已提交
152 153

            .. code-block:: python
C
chenjian 已提交
154
                :name: code-example1
C
chenjian 已提交
155 156 157 158 159

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, repeat=1)


160
        2. profiling range [3,6], [9,12], [15,18].
C
chenjian 已提交
161

162
        Assume batch 0: skiped, batch 1: closed, batch 2: ready, batch [3,6]: record, repeat.
C
chenjian 已提交
163 164

            .. code-block:: python
C
chenjian 已提交
165
                :name: code-example2
C
chenjian 已提交
166 167 168

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, skip_first=1)
C
chenjian 已提交
169 170 171 172 173 174 175 176 177
    """

    def getScheduleState(step: int) -> ProfilerState:
        assert step >= 0
        if step < skip_first:  # within skip_first, just skip
            return ProfilerState.CLOSED
        step = step - skip_first
        period_steps = closed + ready + record
        has_repeated = step // period_steps
178 179 180
        if (
            repeat > 0 and has_repeated >= repeat
        ):  # the period has repeated repeat times, return CLOSED state
C
chenjian 已提交
181 182 183 184 185 186 187 188 189 190 191
            return ProfilerState.CLOSED
        mod_step = step % period_steps
        if mod_step < closed:
            return ProfilerState.CLOSED
        elif mod_step >= closed and mod_step < closed + ready:
            return ProfilerState.READY
        else:
            if mod_step < period_steps - 1:
                return ProfilerState.RECORD
            else:
                return ProfilerState.RECORD_AND_RETURN
192 193 194 195 196 197 198 199

    assert (
        closed >= 0
        and ready >= 0
        and record > 0
        and repeat >= 0
        and skip_first >= 0
    ), "Invalid profiler scheduler arguments"
C
chenjian 已提交
200
    if ready == 0:
201 202
        warn(
            "Profiler will record data after enabling profiler immediately, \
C
chenjian 已提交
203
          some data collected at the beginning of profiling may be 'noisy' because of overhead."
204
        )
C
chenjian 已提交
205 206 207 208 209
    return getScheduleState


def _default_state_scheduler(step: int):
    r"""
210
    A default state scheduler, keep recording from the beginning of the profiler until ending.
C
chenjian 已提交
211 212 213 214
    """
    return ProfilerState.RECORD


215 216 217
def export_chrome_tracing(
    dir_name: str, worker_name: Optional[str] = None
) -> Callable:
C
chenjian 已提交
218 219
    r"""
    Return a callable, used for outputing tracing data to chrome tracing format file.
220 221
    The output file will be saved in directory ``dir_name``, and file name will be set as `worker_name`.
    if `worker_name` is not set, the default name is `[hostname]_[pid]`.
C
chenjian 已提交
222

C
chenjian 已提交
223
    Args:
C
chenjian 已提交
224
        dir_name(str): Directory to save profiling data.
225
        worker_name(str, optional): Prefix of the file name saved, default is `[hostname]_[pid]`.
226

C
chenjian 已提交
227 228
    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to chrome tracing format file.
C
chenjian 已提交
229 230

    Examples:
C
chenjian 已提交
231 232
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
233
        .. code-block:: python
C
chenjian 已提交
234 235 236 237 238 239 240 241 242 243

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready=profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
244 245 246 247 248 249
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
250 251 252 253
                "Can not create directory '{}' for saving profiling results.".format(
                    dir_name
                )
            )
C
chenjian 已提交
254 255 256 257

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
258 259 260
            worker_name = "host_{}pid_{}".format(
                socket.gethostname(), str(os.getpid())
            )
C
chenjian 已提交
261 262
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.json'.format(
263 264
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f')
        )
C
chenjian 已提交
265 266 267 268 269
        prof.export(os.path.join(dir_name, filename), "json")

    return handle_fn


270 271 272
def export_protobuf(
    dir_name: str, worker_name: Optional[str] = None
) -> Callable:
C
chenjian 已提交
273 274
    r"""
    Return a callable, used for outputing tracing data to protobuf file.
275 276
    The output file will be saved in directory ``dir_name``, and file name will be set as ``worker_name``.
    if ``worker_name`` is not set, the default name is `[hostname]_[pid]`.
C
chenjian 已提交
277

C
chenjian 已提交
278
    Args:
C
chenjian 已提交
279
        dir_name(str): Directory to save profiling data.
280
        worker_name(str, optional): Prefix of the file name saved, default is `[hostname]_[pid]`.
C
chenjian 已提交
281 282 283

    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to protobuf file.
C
chenjian 已提交
284 285

    Examples:
C
chenjian 已提交
286 287
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
288
        .. code-block:: python
C
chenjian 已提交
289 290 291 292 293 294 295 296 297 298

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready = profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
299 300 301 302 303 304
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
305 306 307 308
                "Can not create directory '{}' for saving profiling results.".format(
                    dir_name
                )
            )
C
chenjian 已提交
309 310 311 312

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
313 314 315
            worker_name = "host_{}pid_{}".format(
                socket.gethostname(), str(os.getpid())
            )
C
chenjian 已提交
316 317
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.pb'.format(
318 319
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f')
        )
C
chenjian 已提交
320 321 322 323 324 325 326 327 328
        prof.export(os.path.join(dir_name, filename), "pb")

    return handle_fn


def _get_supported_targets() -> Iterable[ProfilerTarget]:
    r"""
    Get the current supported profiler target in the system.
    """
C
chenjian 已提交
329
    if _Profiler.is_cupti_supported():
330
        return [
331 332 333
            ProfilerTarget.CPU,
            ProfilerTarget.GPU,
            ProfilerTarget.CUSTOM_DEVICE,
334
        ]
F
fwenguang 已提交
335
    if _Profiler.is_cnpapi_supported():
336
        return [
337 338 339
            ProfilerTarget.CPU,
            ProfilerTarget.MLU,
            ProfilerTarget.CUSTOM_DEVICE,
340 341
        ]
    return [ProfilerTarget.CPU, ProfilerTarget.CUSTOM_DEVICE]
C
chenjian 已提交
342 343 344 345


class Profiler:
    r"""
C
chenjian 已提交
346
    Profiler context manager, user interface to manage profiling process to start, stop, export profiling data and print summary table.
C
chenjian 已提交
347

C
chenjian 已提交
348
    Args:
F
fwenguang 已提交
349
        targets (list, optional): specify target devices to profile, and all existing and supported devices will be chosen by default. Currently supported values, :ref:`ProfilerTarget.CPU <api_paddle_profiler_ProfilerTarget>` , :ref:`ProfilerTarget.GPU <api_paddle_profiler_ProfilerTarget>` and :ref:`ProfilerTarget.MLU <api_paddle_profiler_ProfilerTarget>` .
C
chenjian 已提交
350 351
        scheduler (Callable|tuple, optional): If it is a callable object, it takes a step number as parameter and return the corresponding :ref:`ProfilerState <api_paddle_profiler_ProfilerState>`. This callable object can be generated by :ref:`make_scheduler <api_paddle_profiler_make_scheduler>` function.
            If not provided (None), the default scheduler will keep tracing until the profiler exits. If it is a tuple, it has two values start_batch and end_batch,
C
chenjian 已提交
352
            which means profiling range [start_batch, end_batch).
C
chenjian 已提交
353
        on_trace_ready (Callable, optional): Callable object, serves as callback function, and takes the Profiler object as parameter, which provides a way for users to do post-processing.
354
            This callable object will be called when ``scheduler`` returns ``ProfilerState.RECORD_AND_RETURN``. The default value is :ref:`export_chrome_tracing <api_paddle_profiler_export_chrome_tracing>`.
Z
Zhang Ting 已提交
355 356
        timer_only (bool, optional): If it is True, the cost of Dataloader and every step of the model will be count without profiling. Otherwise, the model will
            be timed and profiled. Default: False.
357 358
        record_shapes (bool, optional): If it is True, collect op's input shape information. Default: False.
        profile_memory (bool, optional): If it is True, collect tensor memory allocation and release information. Default: False.
R
ronnywang 已提交
359
        custom_device_types (list, optional): If targets contain profiler.ProfilerTarget.CUSTOM_DEVICE, custom_device_types select the custom device type for profiling. The default value represents all custom devices will be selected.
360
        with_flops (bool, optional): If it is True, the flops of the op will be calculated. Default: False.
C
chenjian 已提交
361

C
chenjian 已提交
362
    Examples:
C
chenjian 已提交
363
        1. profiling range [2, 5).
C
chenjian 已提交
364 365

            .. code-block:: python
C
chenjian 已提交
366
                :name: code-example1
C
chenjian 已提交
367 368 369 370 371 372 373 374 375 376 377

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = (2, 5),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

378
        2. profiling range [2,4], [7, 9], [11,13].
C
chenjian 已提交
379 380

            .. code-block:: python
C
chenjian 已提交
381
                :name: code-example2
C
chenjian 已提交
382 383 384 385 386 387 388 389 390 391 392

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = profiler.make_scheduler(closed=1, ready=1, record=3, repeat=3),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

393
        3. Use profiler without context manager, and use default parameters.
C
chenjian 已提交
394 395

            .. code-block:: python
C
chenjian 已提交
396
                :name: code-example3
C
chenjian 已提交
397 398 399 400 401 402 403 404 405 406 407

                # required: gpu
                import paddle.profiler as profiler
                p = profiler.Profiler()
                p.start()
                for iter in range(10):
                    #train()
                    p.step()
                p.stop()
                p.summary()

408
        4. Use profiler to get throughput and cost of the model.
Z
Zhang Ting 已提交
409 410 411 412 413 414

            .. code-block:: python
                :name: code-example-timer1

                import paddle
                import paddle.profiler as profiler
415

Z
Zhang Ting 已提交
416 417 418
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples
419

Z
Zhang Ting 已提交
420 421 422 423
                    def __getitem__(self, idx):
                        image = paddle.rand(shape=[100], dtype='float32')
                        label = paddle.randint(0, 10, shape=[1], dtype='int64')
                        return image, label
424

Z
Zhang Ting 已提交
425 426
                    def __len__(self):
                        return self.num_samples
427

Z
Zhang Ting 已提交
428 429
                class SimpleNet(paddle.nn.Layer):
                    def __init__(self):
430
                        super().__init__()
Z
Zhang Ting 已提交
431
                        self.fc = paddle.nn.Linear(100, 10)
432

Z
Zhang Ting 已提交
433 434
                    def forward(self, image, label=None):
                        return self.fc(image)
435

Z
Zhang Ting 已提交
436 437
                dataset = RandomDataset(20 * 4)
                simple_net = SimpleNet()
438
                opt = paddle.optimizer.SGD(learning_rate=1e-3, parameters=simple_net.parameters())
Z
Zhang Ting 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
                BATCH_SIZE = 4
                loader = paddle.io.DataLoader(
                    dataset,
                    batch_size=BATCH_SIZE)
                p = profiler.Profiler(timer_only=True)
                p.start()
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = paddle.nn.functional.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    p.step(num_samples=BATCH_SIZE)
                    if i % 10 == 0:
                        step_info = p.step_info(unit='images')
                        print("Iter {}: {}".format(i, step_info))
                        # The average statistics for 10 steps between the last and this call will be
                        # printed when the "step_info" is called at 10 iteration intervals.
                        # The values you get may be different from the following.
                        # Iter 0:  reader_cost: 0.51946 s batch_cost: 0.66077 s ips: 6.054 images/s
                        # Iter 10:  reader_cost: 0.00014 s batch_cost: 0.00441 s ips: 907.009 images/s
                p.stop()
                # The performance summary will be automatically printed when the "stop" is called.
                # Reader Ratio: 2.658%
                # Time Unit: s, IPS Unit: images/s
                # |                 |       avg       |       max       |       min       |
                # |   reader_cost   |     0.00011     |     0.00013     |     0.00007     |
                # |    batch_cost   |     0.00405     |     0.00434     |     0.00326     |
                # |       ips       |    1086.42904   |    1227.30604   |    959.92796    |
C
chenjian 已提交
469 470
    """

471 472 473 474 475 476 477
    def __init__(
        self,
        *,
        targets: Optional[Iterable[ProfilerTarget]] = None,
        scheduler: Union[Callable[[int], ProfilerState], tuple, None] = None,
        on_trace_ready: Optional[Callable[..., Any]] = None,
        record_shapes: Optional[bool] = False,
478
        profile_memory: Optional[bool] = False,
479 480
        timer_only: Optional[bool] = False,
        emit_nvtx: Optional[bool] = False,
481 482
        custom_device_types: Optional[list] = [],
        with_flops: Optional[bool] = False,
483
    ):
C
chenjian 已提交
484 485 486 487 488 489
        supported_targets = _get_supported_targets()
        if targets:
            self.targets = set(targets)
            for target in targets:
                if target not in supported_targets:
                    self.targets.remove(target)
490 491 492 493 494
                    warn(
                        "Profiling {} is not supported in current context.".format(
                            target
                        )
                    )
C
chenjian 已提交
495 496 497 498 499 500
        else:
            self.targets = supported_targets
        profileoption = ProfilerOptions()
        if ProfilerTarget.CPU in self.targets:
            profileoption.trace_switch |= 1
        if ProfilerTarget.GPU in self.targets:
501
            profileoption.trace_switch |= 1 << 1
F
fwenguang 已提交
502
        if ProfilerTarget.MLU in self.targets:
503
            profileoption.trace_switch |= 1 << 2
504
        if ProfilerTarget.CUSTOM_DEVICE in self.targets:
505
            profileoption.trace_switch |= 1 << 3
506 507
            if not custom_device_types:
                custom_device_types = paddle.device.get_all_custom_device_type()
C
chenjian 已提交
508
        wrap_optimizers()
509
        self.profiler = _Profiler.create(profileoption, custom_device_types)
C
chenjian 已提交
510 511 512 513 514 515 516
        if callable(scheduler):
            self.scheduler = scheduler
        elif isinstance(scheduler, (tuple, list)):
            assert len(scheduler) == 2 and scheduler[1] > scheduler[0]
            start_batch, end_batch = scheduler
            start_batch = max(start_batch, 0)
            if start_batch >= 1:
517 518 519 520 521 522
                self.scheduler = make_scheduler(
                    closed=max(start_batch - 1, 0),
                    ready=1,
                    record=(end_batch - start_batch),
                    repeat=1,
                )
C
chenjian 已提交
523
            else:
524 525 526 527 528 529
                self.scheduler = make_scheduler(
                    closed=0,
                    ready=0,
                    record=(end_batch - start_batch),
                    repeat=1,
                )
C
chenjian 已提交
530 531 532
        else:
            self.scheduler = _default_state_scheduler

533
        if on_trace_ready is None:
C
chenjian 已提交
534 535 536 537 538 539 540 541
            self.on_trace_ready = export_chrome_tracing('./profiler_log/')
        else:
            self.on_trace_ready = on_trace_ready
        self.step_num = 0
        self.previous_state = ProfilerState.CLOSED
        self.current_state = self.scheduler(self.step_num)
        self.record_event = None
        self.profiler_result = None
Z
Zhang Ting 已提交
542
        self.timer_only = timer_only
543 544
        self.record_shapes = record_shapes
        self.profile_memory = profile_memory
545
        self.with_flops = with_flops
546
        self.emit_nvtx = emit_nvtx
C
chenjian 已提交
547 548 549 550 551 552 553 554 555 556 557

    def __enter__(self):
        self.start()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.stop()

    def start(self):
        r'''
        Start profiler and enter the first profiler step(0).
C
chenjian 已提交
558 559 560 561
        State transformed from CLOSED to self.current_state and trigger corresponding action.

        Examples:
            .. code-block:: python
C
chenjian 已提交
562
                :name: code-example4
C
chenjian 已提交
563 564 565 566 567 568 569 570 571 572 573 574

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 9),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
Z
Zhang Ting 已提交
575

C
chenjian 已提交
576
        '''
577
        # Timing only without profiling.
Z
Zhang Ting 已提交
578
        benchmark().begin()
579 580
        if not self.timer_only or self.emit_nvtx:
            utils._is_profiler_used = True
Z
Zhang Ting 已提交
581 582
        if self.timer_only:
            return
583 584
        if self.record_shapes or self.with_flops:
            enable_op_info_recorder()
585 586
        if self.profile_memory:
            enable_memory_recorder()
C
chenjian 已提交
587 588 589 590 591 592 593 594 595
        # CLOSED -> self.current_state
        if self.current_state == ProfilerState.READY:
            self.profiler.prepare()
        elif self.current_state == ProfilerState.RECORD:
            self.profiler.prepare()
            self.profiler.start()
        elif self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler.prepare()
            self.profiler.start()
596 597 598 599
        self.record_event = RecordEvent(
            name="ProfileStep#{}".format(self.step_num),
            event_type=TracerEventType.ProfileStep,
        )
C
chenjian 已提交
600 601 602 603 604 605
        self.record_event.begin()

    def stop(self):
        r'''
        Stop profiler and State transformed from self.current_state to CLOSED.
        Trigger corresponding action and post-process profiler result using self.on_trace_ready if result exists.
C
chenjian 已提交
606 607 608

        Examples:
            .. code-block:: python
C
chenjian 已提交
609
                :name: code-example5
C
chenjian 已提交
610 611 612 613 614 615 616 617 618 619 620 621

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
622
        '''
Z
Zhang Ting 已提交
623 624 625
        benchmark().end()
        if self.timer_only:
            return
626 627
        if self.record_shapes or self.with_flops:
            disable_op_info_recorder()
628 629
        if self.profile_memory:
            disable_memory_recorder()
C
chenjian 已提交
630
        # self.current_state -> CLOSED
631
        # In this situation, RECORD state is regarded as RECORD_AND_RETURN.
C
chenjian 已提交
632 633 634 635 636 637 638 639 640
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        if self.current_state == ProfilerState.READY:
            warn(
                "Inproper Profiler state transform: READY->CLOSED, profiler will start and stop without saving data"
            )
            self.profiler.start()
            self.profiler.stop()
641 642 643 644
        if (
            self.current_state == ProfilerState.RECORD
            or self.current_state == ProfilerState.RECORD_AND_RETURN
        ):
C
chenjian 已提交
645 646 647
            self.profiler_result = self.profiler.stop()
            if self.on_trace_ready:
                self.on_trace_ready(self)
648
        utils._is_profiler_used = False
C
chenjian 已提交
649

650
    def step(self, num_samples: Optional[int] = None):
C
chenjian 已提交
651 652 653
        r"""
        Signals the profiler that the next profiling step has started.
        Get the new ProfilerState and trigger corresponding action.
C
chenjian 已提交
654

Z
Zhang Ting 已提交
655 656
        Args:
            num_samples (int|None, optional): Specifies the batch size of every step of the model
657
                that is used to compute throughput when `timer_only` is True. Default: None.
Z
Zhang Ting 已提交
658

C
chenjian 已提交
659 660
        Examples:
            .. code-block:: python
C
chenjian 已提交
661
                :name: code-example6
C
chenjian 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))

                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
675
        """
Z
Zhang Ting 已提交
676 677 678
        benchmark().step(num_samples)
        if self.timer_only:
            return
C
chenjian 已提交
679 680 681 682 683 684 685
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        self.previous_state = self.current_state
        self.step_num += 1
        self.current_state = self.scheduler(self.step_num)
        self._trigger_action()
686 687 688 689
        self.record_event = RecordEvent(
            name="ProfileStep#{}".format(self.step_num),
            event_type=TracerEventType.ProfileStep,
        )
C
chenjian 已提交
690 691
        self.record_event.begin()

Z
Zhang Ting 已提交
692 693 694 695
    def step_info(self, unit=None):
        r"""
        Get statistics for current step. If the function is called at certain iteration
        intervals, the result is the average of all steps between the previous call and
696
        this call. Statistics are as follows:
Z
Zhang Ting 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

        1. reader_cost: the cost of loading data measured in seconds.

        2. batch_cost: the cost of step measured in seconds.

        3. ips(Instance Per Second): the throughput of the model measured in `samples/s`
        or others depends on the `unit`. When `num_samples` of `step()` is None, it is
        measured in `steps/s`.

        Args:
            unit (string, optional): The unit of input data is only used When `num_samples`
                of `step()` is specified as a number. For example, when it is `images`, the unit
                of throughput is `images/s`. Default: None, the unit of throughput is `samples/s`.

        Returns:
            string: A string representing the statistic.

        Examples:
            .. code-block:: python
                :name: code-example-timer2

                import paddle.profiler as profiler
                prof = profiler.Profiler(timer_only=True)
                prof.start()
                for iter in range(20):
                    #train()
                    prof.step()
                    if iter % 10 == 0:
                        print("Iter {}: {}".format(iter, prof.step_info()))
                        # The example does not call the DataLoader, so there is no "reader_cost".
                        # Iter 0:  batch_cost: 0.00001 s ips: 86216.623 steps/s
                        # Iter 10:  batch_cost: 0.00001 s ips: 103645.034 steps/s
                prof.stop()
                # Time Unit: s, IPS Unit: steps/s
                # |                 |       avg       |       max       |       min       |
                # |    batch_cost   |     0.00000     |     0.00002     |     0.00000     |
                # |       ips       |   267846.19437  |   712030.38727  |   45134.16662   |
        """
        if unit is None:
            unit = 'samples'
        return benchmark().step_info(unit)

C
chenjian 已提交
739 740 741 742 743 744 745
    def _trigger_action(self):
        if self.previous_state == ProfilerState.CLOSED:
            if self.current_state == ProfilerState.READY:  # CLOSED -> READY
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # CLOSED -> RECORD
                self.profiler.prepare()
                self.profiler.start()
746 747 748
            if (
                self.current_state == ProfilerState.RECORD_AND_RETURN
            ):  # CLOSED -> RECORD_AND_RETURN
C
chenjian 已提交
749 750 751 752 753 754 755 756 757 758 759 760
                self.profiler.prepare()
                self.profiler.start()

        elif self.previous_state == ProfilerState.READY:
            if self.current_state == ProfilerState.CLOSED:  # READY -> CLOSED
                warn(
                    "Improper schedule: READY->CLOSED, profiler will start and stop without saving data"
                )
                self.profiler.start()
                self.profiler.stop()
            if self.current_state == ProfilerState.RECORD:  # READY -> RECORD
                self.profiler.start()
761 762 763
            if (
                self.current_state == ProfilerState.RECORD_AND_RETURN
            ):  # READY -> RECORD_AND_RETURN
C
chenjian 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
                self.profiler.start()

        elif self.previous_state == ProfilerState.RECORD:
            if self.current_state == ProfilerState.CLOSED:  # RECORD -> CLOSED
                warn(
                    "Improper schedule: RECORD->CLOSED, profiler will not saving data"
                )
                self.profiler.stop()

            if self.current_state == ProfilerState.READY:  # RECORD -> READY
                warn(
                    "Improper schedule: RECORD->READY, profiler will stop and re-prepare"
                )
                self.profiler.stop()
                self.profiler.prepare()
779 780 781
            if (
                self.current_state == ProfilerState.RECORD_AND_RETURN
            ):  # RECORD -> RECORD_AND_RETURN
C
chenjian 已提交
782 783 784 785
                pass

        else:
            assert self.previous_state == ProfilerState.RECORD_AND_RETURN
786 787 788
            if (
                self.current_state == ProfilerState.CLOSED
            ):  # RECORD_AND_RETURN -> CLOSED
C
chenjian 已提交
789
                self.profiler_result = self.profiler.stop()
790 791 792
            if (
                self.current_state == ProfilerState.READY
            ):  # RECORD_AND_RETURN -> READY
C
chenjian 已提交
793 794
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
795 796 797
            if (
                self.current_state == ProfilerState.RECORD
            ):  # RECORD_AND_RETURN -> RECORD
C
chenjian 已提交
798 799 800
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
801 802 803
            if (
                self.current_state == ProfilerState.RECORD_AND_RETURN
            ):  # RECORD_AND_RETURN -> RECORD_AND_RETURN
C
chenjian 已提交
804 805 806 807 808 809 810 811
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.on_trace_ready:
                self.on_trace_ready(self)

    def export(self, path="", format="json"):
        r"""
C
chenjian 已提交
812 813 814 815
        Exports the tracing data to file.

        Args:
            path(str): file path of the output.
816
            format(str, optional): output format, can be chosen from ['json', 'pb'], 'json' for chrome tracing and 'pb' for protobuf, default value is 'json'.
C
chenjian 已提交
817

C
chenjian 已提交
818 819 820

        Examples:
            .. code-block:: python
C
chenjian 已提交
821
                :name: code-example7
C
chenjian 已提交
822 823 824 825 826 827 828 829 830 831 832 833

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.export(path="./profiler_data.json", format="json")
C
chenjian 已提交
834 835 836 837
        """
        if self.profiler_result:
            self.profiler_result.save(path, format)

838 839 840 841 842 843 844 845
    def summary(
        self,
        sorted_by=SortedKeys.CPUTotal,
        op_detail=True,
        thread_sep=False,
        time_unit='ms',
        views=None,
    ):
C
chenjian 已提交
846
        r"""
C
chenjian 已提交
847
        Print the Summary table. Currently support overview, model, distributed, operator, memory manipulation and userdefined summary.
C
chenjian 已提交
848

C
chenjian 已提交
849 850 851 852 853
        Args:
            sorted_by( :ref:`SortedKeys <api_paddle_profiler_SortedKeys>` , optional): how to rank the op table items, default value is SortedKeys.CPUTotal.
            op_detail(bool, optional): expand each operator detail information, default value is True.
            thread_sep(bool, optional): print op table each thread, default value is False.
            time_unit(str, optional): time unit for display, can be chosen form ['s', 'ms', 'us', 'ns'], default value is 'ms'.
854
            views(SummaryView|list[SummaryView], optional): summary tables to print, default to None means all views to be printed.
C
chenjian 已提交
855 856 857

        Examples:
            .. code-block:: python
C
chenjian 已提交
858
                :name: code-example8
C
chenjian 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.summary(sorted_by=profiler.SortedKeys.CPUTotal, op_detail=True, thread_sep=False, time_unit='ms')
C
chenjian 已提交
872
        """
873 874 875
        if isinstance(views, SummaryView):
            views = [views]

C
chenjian 已提交
876 877 878
        if self.profiler_result:
            statistic_data = StatisticData(
                self.profiler_result.get_data(),
879 880
                self.profiler_result.get_extra_info(),
            )
C
chenjian 已提交
881
            print(
882 883 884 885 886 887 888 889 890
                _build_table(
                    statistic_data,
                    sorted_by=sorted_by,
                    op_detail=op_detail,
                    thread_sep=thread_sep,
                    time_unit=time_unit,
                    views=views,
                )
            )
C
chenjian 已提交
891

892 893 894 895 896 897 898 899 900 901 902 903
        if self.with_flops:
            self._print_flops()

    def _print_flops(self, repeat=1):
        if not self.with_flops:
            print('ERROR: with_flops disabled.')
            return

        print(" Flops Profiler Begin ".center(100, "-"))
        print(gen_layer_flops(self.profiler_result.get_data(), repeat))
        print("- Flops Profiler End -".center(100, "-"))

C
chenjian 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934

def get_profiler(config_path):
    try:
        with open(config_path, 'r') as filehandle:
            config_dict = json.load(filehandle)
    except Exception as e:
        print('Load config file for profiler error: {}'.format(e))
        print('Use default parameters instead.')
        return Profiler()
    translated_config_dict = {}
    if "targets" in config_dict:
        try:
            translated_config_dict['targets'] = []
            for target in config_dict['targets']:
                if target.lower() == "cpu":
                    translated_config_dict['targets'].append(ProfilerTarget.CPU)
                elif target.lower() == 'gpu':
                    translated_config_dict['targets'].append(ProfilerTarget.GPU)
        except:
            print('Set targets parameter error, use default parameter instead.')
            translated_config_dict['targets'] = None
    if "scheduler" in config_dict:
        try:
            if isinstance(config_dict['scheduler'], dict):
                for key, value in config_dict['scheduler'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['scheduler'] = method(
935 936
                            *value['args'], **value['kwargs']
                        )
C
chenjian 已提交
937 938 939 940
                    else:
                        translated_config_dict['scheduler'] = method
            else:
                translated_config_dict['scheduler'] = [
941 942
                    config_dict['scheduler'][0],
                    config_dict['scheduler'][1],
C
chenjian 已提交
943 944 945 946
                ]

        except:
            print(
947 948
                'Set scheduler parameter error, use default parameter instead.'
            )
C
chenjian 已提交
949 950 951 952 953 954 955 956 957 958 959
            translated_config_dict['scheduler'] = None
    if "on_trace_ready" in config_dict:
        try:
            if isinstance(config_dict['on_trace_ready'], dict):
                for key, value in config_dict['on_trace_ready'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['on_trace_ready'] = method(
960 961
                            *value['args'], **value['kwargs']
                        )
C
chenjian 已提交
962 963 964 965 966 967 968 969 970 971 972 973
                    else:
                        translated_config_dict['on_trace_ready'] = method
        except:
            print(
                'Set on_trace_ready parameter error, use default parameter instead.'
            )
            translated_config_dict['on_trace_ready'] = None
    if "timer_only" in config_dict:
        if isinstance(config_dict['timer_only'], bool):
            translated_config_dict['timer_only'] = config_dict['timer_only']
        else:
            print(
974 975
                'Set timer_only parameter error, use default parameter instead.'
            )
C
chenjian 已提交
976 977

    return Profiler(**translated_config_dict)