profiler.py 37.7 KB
Newer Older
C
chenjian 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenjian 已提交
2
#
C
chenjian 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
C
chenjian 已提交
6
#
C
chenjian 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chenjian 已提交
8
#
C
chenjian 已提交
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import socket
import datetime
from enum import Enum
from typing import Any, Callable, Iterable, Optional, Union
from warnings import warn
C
chenjian 已提交
21 22
import importlib
import json
C
chenjian 已提交
23 24

import paddle
25 26 27 28 29
from paddle.fluid.core import (
    _Profiler,
    ProfilerOptions,
    TracerEventType,
    enable_memory_recorder,
30
    enable_op_info_recorder,
31
    disable_memory_recorder,
32
    disable_op_info_recorder,
33
)
C
chenjian 已提交
34 35

from .utils import RecordEvent, wrap_optimizers
C
chenjian 已提交
36
from .profiler_statistic import StatisticData, _build_table, SortedKeys
37
from paddle.profiler import utils
Z
Zhang Ting 已提交
38
from .timer import benchmark
C
chenjian 已提交
39 40


41 42 43 44
class SummaryView(Enum):
    r"""
    SummaryView define the summary view of different contents.

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    - **SummaryView.DeviceView** : The device summary view.

    - **SummaryView.OverView** : The overview summary view.

    - **SummaryView.ModelView** : The model summary view.

    - **SummaryView.DistributedView** : The distributed summary view.

    - **SummaryView.KernelView** : The kernel summary view.

    - **SummaryView.OperatorView** : The operator summary view.

    - **SummaryView.MemoryView** : The memory summary view.

    - **SummaryView.MemoryManipulationView** : The meomory manipulation summary view.

    - **SummaryView.UDFView** : The user defined summary view.
62 63 64 65 66 67 68 69 70 71 72 73
    """
    DeviceView = 0
    OverView = 1
    ModelView = 2
    DistributedView = 3
    KernelView = 4
    OperatorView = 5
    MemoryView = 6
    MemoryManipulationView = 7
    UDFView = 8


C
chenjian 已提交
74 75
class ProfilerState(Enum):
    r"""
C
chenjian 已提交
76
    ProfilerState is used to present the state of :ref:`Profiler <api_paddle_profiler_Profiler>` .
C
chenjian 已提交
77

C
chenjian 已提交
78
    The meaning of each ProfilerState is as following
C
chenjian 已提交
79

C
chenjian 已提交
80
    - **ProfilerState.CLOSED** : The profiler is closed, and no profiling data will be recorded.
C
chenjian 已提交
81

C
chenjian 已提交
82
    - **ProfilerState.READY** : The profiler is open, but the data will not be recorded. This state is used for reducing overhead influence when profiler starts.
C
chenjian 已提交
83

C
chenjian 已提交
84 85 86
    - **ProfilerState.RECORD** : The profiler is open, and the data will be recorded.

    - **ProfilerState.RECORD_AND_RETURN** : The profiler is open, and this state stands for the last batch of "RECORD" state in current profiling period. The collected data will be returned in this state.
C
chenjian 已提交
87 88 89 90
    """
    CLOSED = 0
    READY = 1
    RECORD = 2
C
chenjian 已提交
91
    RECORD_AND_RETURN = 3  # the last step of RECORD
C
chenjian 已提交
92 93 94 95


class ProfilerTarget(Enum):
    r"""
F
fwenguang 已提交
96
    ProfilerTarget is used to specify target device for :ref:`profiling <api_paddle_profiler_Profiler>` . Only CPU, GPU and MLU are supported currently.
C
chenjian 已提交
97

C
chenjian 已提交
98 99 100 101 102
    The meaning of each ProfilerState is as following

    - **ProfilerTarget.CPU** : Profile events on CPU.

    - **ProfilerTarget.GPU** : Profile events on GPU.
F
fwenguang 已提交
103 104

    - **ProfilerTarget.MLU** : Profile events on MLU.
C
chenjian 已提交
105 106 107
    """
    CPU = 0
    GPU = 1
F
fwenguang 已提交
108
    MLU = 2
109
    CUSTOM_DEVICE = 3
C
chenjian 已提交
110 111


112 113 114 115 116 117
def make_scheduler(
    *,
    closed: int,
    ready: int,
    record: int,
    repeat: int = 0,
118
    skip_first: int = 0,
119
) -> Callable:
C
chenjian 已提交
120
    r"""
C
chenjian 已提交
121
    Return a scheduler function, which scheduler the :ref:`state <api_paddle_profiler_ProfilerState>` according to the setting.
C
chenjian 已提交
122 123
    The state transform confirms to:

C
chenjian 已提交
124 125 126 127 128 129 130 131
    .. code-block:: text

        (CLOSED)  (CLOSED)    (CLOSED)  (READY)    (RECORD,last RETURN)      (CLOSED)
        START -> skip_first -> closed -> ready    ->    record       ->      END
                                |                        |
                                |                        | (if has_repeated < repeat)
                                - - - - - - - - - - - -
        Note that repeat <= 0 means the cycle will continue until the profiler exits.
C
chenjian 已提交
132

C
chenjian 已提交
133
    Args:
C
chenjian 已提交
134
        closed(int): The number of steps in state ProfilerState.CLOSED.
C
chenjian 已提交
135
        ready(int):  The number of steps in state ProfilerState.READY.
C
chenjian 已提交
136 137 138
        record(int): The number of steps in state ProfilerState.RECORD, and the state in last step will be set as ProfilerState.RECORD_AND_RETURN.
        repeat(int, optional): The number of cycles to repeat above state transform. Default value is 0, which means it will repeat this cycle until profiler exits.
        skip_first(int, optional): The number of first steps to drop, not participate in the state transform, and at ProfilerState.CLOSED state. Default value is 0.
C
chenjian 已提交
139 140

    Returns:
141
        A scheduler function, conforms to above state transform setting. The function will takes one parameter `step_num`, and returns corresponding ProfilerState.
C
chenjian 已提交
142 143

    Examples:
144
        1. profiling range [2, 5].
C
chenjian 已提交
145

146
        Assume batch 0: closed, batch 1: ready, batch [2, 5] record.
C
chenjian 已提交
147 148

            .. code-block:: python
C
chenjian 已提交
149
                :name: code-example1
C
chenjian 已提交
150 151 152 153 154

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, repeat=1)


155
        2. profiling range [3,6], [9,12], [15,18].
C
chenjian 已提交
156

157
        Assume batch 0: skiped, batch 1: closed, batch 2: ready, batch [3,6]: record, repeat.
C
chenjian 已提交
158 159

            .. code-block:: python
C
chenjian 已提交
160
                :name: code-example2
C
chenjian 已提交
161 162 163

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, skip_first=1)
C
chenjian 已提交
164 165 166 167 168 169 170 171 172
    """

    def getScheduleState(step: int) -> ProfilerState:
        assert step >= 0
        if step < skip_first:  # within skip_first, just skip
            return ProfilerState.CLOSED
        step = step - skip_first
        period_steps = closed + ready + record
        has_repeated = step // period_steps
173 174 175
        if (
            repeat > 0 and has_repeated >= repeat
        ):  # the period has repeated repeat times, return CLOSED state
C
chenjian 已提交
176 177 178 179 180 181 182 183 184 185 186
            return ProfilerState.CLOSED
        mod_step = step % period_steps
        if mod_step < closed:
            return ProfilerState.CLOSED
        elif mod_step >= closed and mod_step < closed + ready:
            return ProfilerState.READY
        else:
            if mod_step < period_steps - 1:
                return ProfilerState.RECORD
            else:
                return ProfilerState.RECORD_AND_RETURN
187 188 189 190 191 192 193 194

    assert (
        closed >= 0
        and ready >= 0
        and record > 0
        and repeat >= 0
        and skip_first >= 0
    ), "Invalid profiler scheduler arguments"
C
chenjian 已提交
195
    if ready == 0:
196 197
        warn(
            "Profiler will record data after enabling profiler immediately, \
C
chenjian 已提交
198
          some data collected at the beginning of profiling may be 'noisy' because of overhead."
199
        )
C
chenjian 已提交
200 201 202 203 204
    return getScheduleState


def _default_state_scheduler(step: int):
    r"""
205
    A default state scheduler, keep recording from the beginning of the profiler until ending.
C
chenjian 已提交
206 207 208 209
    """
    return ProfilerState.RECORD


210 211 212
def export_chrome_tracing(
    dir_name: str, worker_name: Optional[str] = None
) -> Callable:
C
chenjian 已提交
213 214
    r"""
    Return a callable, used for outputing tracing data to chrome tracing format file.
215 216
    The output file will be saved in directory ``dir_name``, and file name will be set as `worker_name`.
    if `worker_name` is not set, the default name is `[hostname]_[pid]`.
C
chenjian 已提交
217

C
chenjian 已提交
218
    Args:
C
chenjian 已提交
219
        dir_name(str): Directory to save profiling data.
220
        worker_name(str, optional): Prefix of the file name saved, default is `[hostname]_[pid]`.
221

C
chenjian 已提交
222 223
    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to chrome tracing format file.
C
chenjian 已提交
224 225

    Examples:
C
chenjian 已提交
226 227
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
228
        .. code-block:: python
C
chenjian 已提交
229 230 231 232 233 234 235 236 237 238

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready=profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
239 240 241 242 243 244
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
245 246 247 248
                "Can not create directory '{}' for saving profiling results.".format(
                    dir_name
                )
            )
C
chenjian 已提交
249 250 251 252

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
253 254 255
            worker_name = "host_{}pid_{}".format(
                socket.gethostname(), str(os.getpid())
            )
C
chenjian 已提交
256 257
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.json'.format(
258 259
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f')
        )
C
chenjian 已提交
260 261 262 263 264
        prof.export(os.path.join(dir_name, filename), "json")

    return handle_fn


265 266 267
def export_protobuf(
    dir_name: str, worker_name: Optional[str] = None
) -> Callable:
C
chenjian 已提交
268 269
    r"""
    Return a callable, used for outputing tracing data to protobuf file.
270 271
    The output file will be saved in directory ``dir_name``, and file name will be set as ``worker_name``.
    if ``worker_name`` is not set, the default name is `[hostname]_[pid]`.
C
chenjian 已提交
272

C
chenjian 已提交
273
    Args:
C
chenjian 已提交
274
        dir_name(str): Directory to save profiling data.
275
        worker_name(str, optional): Prefix of the file name saved, default is `[hostname]_[pid]`.
C
chenjian 已提交
276 277 278

    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to protobuf file.
C
chenjian 已提交
279 280

    Examples:
C
chenjian 已提交
281 282
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
283
        .. code-block:: python
C
chenjian 已提交
284 285 286 287 288 289 290 291 292 293

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready = profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
294 295 296 297 298 299
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
300 301 302 303
                "Can not create directory '{}' for saving profiling results.".format(
                    dir_name
                )
            )
C
chenjian 已提交
304 305 306 307

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
308 309 310
            worker_name = "host_{}pid_{}".format(
                socket.gethostname(), str(os.getpid())
            )
C
chenjian 已提交
311 312
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.pb'.format(
313 314
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f')
        )
C
chenjian 已提交
315 316 317 318 319 320 321 322 323
        prof.export(os.path.join(dir_name, filename), "pb")

    return handle_fn


def _get_supported_targets() -> Iterable[ProfilerTarget]:
    r"""
    Get the current supported profiler target in the system.
    """
C
chenjian 已提交
324
    if _Profiler.is_cupti_supported():
325
        return [
326 327 328
            ProfilerTarget.CPU,
            ProfilerTarget.GPU,
            ProfilerTarget.CUSTOM_DEVICE,
329
        ]
F
fwenguang 已提交
330
    if _Profiler.is_cnpapi_supported():
331
        return [
332 333 334
            ProfilerTarget.CPU,
            ProfilerTarget.MLU,
            ProfilerTarget.CUSTOM_DEVICE,
335 336
        ]
    return [ProfilerTarget.CPU, ProfilerTarget.CUSTOM_DEVICE]
C
chenjian 已提交
337 338 339 340


class Profiler:
    r"""
C
chenjian 已提交
341
    Profiler context manager, user interface to manage profiling process to start, stop, export profiling data and print summary table.
C
chenjian 已提交
342

C
chenjian 已提交
343
    Args:
F
fwenguang 已提交
344
        targets (list, optional): specify target devices to profile, and all existing and supported devices will be chosen by default. Currently supported values, :ref:`ProfilerTarget.CPU <api_paddle_profiler_ProfilerTarget>` , :ref:`ProfilerTarget.GPU <api_paddle_profiler_ProfilerTarget>` and :ref:`ProfilerTarget.MLU <api_paddle_profiler_ProfilerTarget>` .
C
chenjian 已提交
345 346
        scheduler (Callable|tuple, optional): If it is a callable object, it takes a step number as parameter and return the corresponding :ref:`ProfilerState <api_paddle_profiler_ProfilerState>`. This callable object can be generated by :ref:`make_scheduler <api_paddle_profiler_make_scheduler>` function.
            If not provided (None), the default scheduler will keep tracing until the profiler exits. If it is a tuple, it has two values start_batch and end_batch,
C
chenjian 已提交
347
            which means profiling range [start_batch, end_batch).
C
chenjian 已提交
348
        on_trace_ready (Callable, optional): Callable object, serves as callback function, and takes the Profiler object as parameter, which provides a way for users to do post-processing.
349
            This callable object will be called when ``scheduler`` returns ``ProfilerState.RECORD_AND_RETURN``. The default value is :ref:`export_chrome_tracing <api_paddle_profiler_export_chrome_tracing>`.
Z
Zhang Ting 已提交
350 351
        timer_only (bool, optional): If it is True, the cost of Dataloader and every step of the model will be count without profiling. Otherwise, the model will
            be timed and profiled. Default: False.
352 353
        record_shapes (bool, optional): If it is True, collect op's input shape information. Default: False.
        profile_memory (bool, optional): If it is True, collect tensor memory allocation and release information. Default: False.
354
        with_flops (bool, optional): If it is True, the flops of the op will be calculated. Default: False.
C
chenjian 已提交
355

C
chenjian 已提交
356
    Examples:
C
chenjian 已提交
357
        1. profiling range [2, 5).
C
chenjian 已提交
358 359

            .. code-block:: python
C
chenjian 已提交
360
                :name: code-example1
C
chenjian 已提交
361 362 363 364 365 366 367 368 369 370 371

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = (2, 5),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

372
        2. profiling range [2,4], [7, 9], [11,13].
C
chenjian 已提交
373 374

            .. code-block:: python
C
chenjian 已提交
375
                :name: code-example2
C
chenjian 已提交
376 377 378 379 380 381 382 383 384 385 386

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = profiler.make_scheduler(closed=1, ready=1, record=3, repeat=3),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

387
        3. Use profiler without context manager, and use default parameters.
C
chenjian 已提交
388 389

            .. code-block:: python
C
chenjian 已提交
390
                :name: code-example3
C
chenjian 已提交
391 392 393 394 395 396 397 398 399 400 401

                # required: gpu
                import paddle.profiler as profiler
                p = profiler.Profiler()
                p.start()
                for iter in range(10):
                    #train()
                    p.step()
                p.stop()
                p.summary()

402
        4. Use profiler to get throughput and cost of the model.
Z
Zhang Ting 已提交
403 404 405 406 407 408

            .. code-block:: python
                :name: code-example-timer1

                import paddle
                import paddle.profiler as profiler
409

Z
Zhang Ting 已提交
410 411 412
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples
413

Z
Zhang Ting 已提交
414 415 416 417
                    def __getitem__(self, idx):
                        image = paddle.rand(shape=[100], dtype='float32')
                        label = paddle.randint(0, 10, shape=[1], dtype='int64')
                        return image, label
418

Z
Zhang Ting 已提交
419 420
                    def __len__(self):
                        return self.num_samples
421

Z
Zhang Ting 已提交
422 423
                class SimpleNet(paddle.nn.Layer):
                    def __init__(self):
424
                        super().__init__()
Z
Zhang Ting 已提交
425
                        self.fc = paddle.nn.Linear(100, 10)
426

Z
Zhang Ting 已提交
427 428
                    def forward(self, image, label=None):
                        return self.fc(image)
429

Z
Zhang Ting 已提交
430 431
                dataset = RandomDataset(20 * 4)
                simple_net = SimpleNet()
432
                opt = paddle.optimizer.SGD(learning_rate=1e-3, parameters=simple_net.parameters())
Z
Zhang Ting 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
                BATCH_SIZE = 4
                loader = paddle.io.DataLoader(
                    dataset,
                    batch_size=BATCH_SIZE)
                p = profiler.Profiler(timer_only=True)
                p.start()
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = paddle.nn.functional.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    p.step(num_samples=BATCH_SIZE)
                    if i % 10 == 0:
                        step_info = p.step_info(unit='images')
                        print("Iter {}: {}".format(i, step_info))
                        # The average statistics for 10 steps between the last and this call will be
                        # printed when the "step_info" is called at 10 iteration intervals.
                        # The values you get may be different from the following.
                        # Iter 0:  reader_cost: 0.51946 s batch_cost: 0.66077 s ips: 6.054 images/s
                        # Iter 10:  reader_cost: 0.00014 s batch_cost: 0.00441 s ips: 907.009 images/s
                p.stop()
                # The performance summary will be automatically printed when the "stop" is called.
                # Reader Ratio: 2.658%
                # Time Unit: s, IPS Unit: images/s
                # |                 |       avg       |       max       |       min       |
                # |   reader_cost   |     0.00011     |     0.00013     |     0.00007     |
                # |    batch_cost   |     0.00405     |     0.00434     |     0.00326     |
                # |       ips       |    1086.42904   |    1227.30604   |    959.92796    |
C
chenjian 已提交
463 464
    """

465 466 467 468 469 470 471
    def __init__(
        self,
        *,
        targets: Optional[Iterable[ProfilerTarget]] = None,
        scheduler: Union[Callable[[int], ProfilerState], tuple, None] = None,
        on_trace_ready: Optional[Callable[..., Any]] = None,
        record_shapes: Optional[bool] = False,
472
        profile_memory: Optional[bool] = False,
473 474
        timer_only: Optional[bool] = False,
        emit_nvtx: Optional[bool] = False,
475 476
        custom_device_types: Optional[list] = [],
        with_flops: Optional[bool] = False,
477
    ):
C
chenjian 已提交
478 479 480 481 482 483
        supported_targets = _get_supported_targets()
        if targets:
            self.targets = set(targets)
            for target in targets:
                if target not in supported_targets:
                    self.targets.remove(target)
484 485 486 487 488
                    warn(
                        "Profiling {} is not supported in current context.".format(
                            target
                        )
                    )
C
chenjian 已提交
489 490 491 492 493 494
        else:
            self.targets = supported_targets
        profileoption = ProfilerOptions()
        if ProfilerTarget.CPU in self.targets:
            profileoption.trace_switch |= 1
        if ProfilerTarget.GPU in self.targets:
495
            profileoption.trace_switch |= 1 << 1
F
fwenguang 已提交
496
        if ProfilerTarget.MLU in self.targets:
497
            profileoption.trace_switch |= 1 << 2
498
        if ProfilerTarget.CUSTOM_DEVICE in self.targets:
499
            profileoption.trace_switch |= 1 << 3
500 501
            if not custom_device_types:
                custom_device_types = paddle.device.get_all_custom_device_type()
C
chenjian 已提交
502
        wrap_optimizers()
503
        self.profiler = _Profiler.create(profileoption, custom_device_types)
C
chenjian 已提交
504 505 506 507 508 509 510
        if callable(scheduler):
            self.scheduler = scheduler
        elif isinstance(scheduler, (tuple, list)):
            assert len(scheduler) == 2 and scheduler[1] > scheduler[0]
            start_batch, end_batch = scheduler
            start_batch = max(start_batch, 0)
            if start_batch >= 1:
511 512 513 514 515 516
                self.scheduler = make_scheduler(
                    closed=max(start_batch - 1, 0),
                    ready=1,
                    record=(end_batch - start_batch),
                    repeat=1,
                )
C
chenjian 已提交
517
            else:
518 519 520 521 522 523
                self.scheduler = make_scheduler(
                    closed=0,
                    ready=0,
                    record=(end_batch - start_batch),
                    repeat=1,
                )
C
chenjian 已提交
524 525 526
        else:
            self.scheduler = _default_state_scheduler

527
        if on_trace_ready is None:
C
chenjian 已提交
528 529 530 531 532 533 534 535
            self.on_trace_ready = export_chrome_tracing('./profiler_log/')
        else:
            self.on_trace_ready = on_trace_ready
        self.step_num = 0
        self.previous_state = ProfilerState.CLOSED
        self.current_state = self.scheduler(self.step_num)
        self.record_event = None
        self.profiler_result = None
Z
Zhang Ting 已提交
536
        self.timer_only = timer_only
537 538
        self.record_shapes = record_shapes
        self.profile_memory = profile_memory
539
        self.with_flops = with_flops
540
        self.emit_nvtx = emit_nvtx
C
chenjian 已提交
541 542 543 544 545 546 547 548 549 550 551

    def __enter__(self):
        self.start()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.stop()

    def start(self):
        r'''
        Start profiler and enter the first profiler step(0).
C
chenjian 已提交
552 553 554 555
        State transformed from CLOSED to self.current_state and trigger corresponding action.

        Examples:
            .. code-block:: python
C
chenjian 已提交
556
                :name: code-example4
C
chenjian 已提交
557 558 559 560 561 562 563 564 565 566 567 568

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 9),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
Z
Zhang Ting 已提交
569

C
chenjian 已提交
570
        '''
571
        # Timing only without profiling.
Z
Zhang Ting 已提交
572
        benchmark().begin()
573 574
        if not self.timer_only or self.emit_nvtx:
            utils._is_profiler_used = True
Z
Zhang Ting 已提交
575 576
        if self.timer_only:
            return
577 578
        if self.record_shapes or self.with_flops:
            enable_op_info_recorder()
579 580
        if self.profile_memory:
            enable_memory_recorder()
C
chenjian 已提交
581 582 583 584 585 586 587 588 589
        # CLOSED -> self.current_state
        if self.current_state == ProfilerState.READY:
            self.profiler.prepare()
        elif self.current_state == ProfilerState.RECORD:
            self.profiler.prepare()
            self.profiler.start()
        elif self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler.prepare()
            self.profiler.start()
590 591 592 593
        self.record_event = RecordEvent(
            name="ProfileStep#{}".format(self.step_num),
            event_type=TracerEventType.ProfileStep,
        )
C
chenjian 已提交
594 595 596 597 598 599
        self.record_event.begin()

    def stop(self):
        r'''
        Stop profiler and State transformed from self.current_state to CLOSED.
        Trigger corresponding action and post-process profiler result using self.on_trace_ready if result exists.
C
chenjian 已提交
600 601 602

        Examples:
            .. code-block:: python
C
chenjian 已提交
603
                :name: code-example5
C
chenjian 已提交
604 605 606 607 608 609 610 611 612 613 614 615

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
616
        '''
Z
Zhang Ting 已提交
617 618 619
        benchmark().end()
        if self.timer_only:
            return
620 621
        if self.record_shapes or self.with_flops:
            disable_op_info_recorder()
622 623
        if self.profile_memory:
            disable_memory_recorder()
C
chenjian 已提交
624
        # self.current_state -> CLOSED
625
        # In this situation, RECORD state is regarded as RECORD_AND_RETURN.
C
chenjian 已提交
626 627 628 629 630 631 632 633 634
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        if self.current_state == ProfilerState.READY:
            warn(
                "Inproper Profiler state transform: READY->CLOSED, profiler will start and stop without saving data"
            )
            self.profiler.start()
            self.profiler.stop()
635 636 637 638
        if (
            self.current_state == ProfilerState.RECORD
            or self.current_state == ProfilerState.RECORD_AND_RETURN
        ):
C
chenjian 已提交
639 640 641
            self.profiler_result = self.profiler.stop()
            if self.on_trace_ready:
                self.on_trace_ready(self)
642
        utils._is_profiler_used = False
C
chenjian 已提交
643

644
    def step(self, num_samples: Optional[int] = None):
C
chenjian 已提交
645 646 647
        r"""
        Signals the profiler that the next profiling step has started.
        Get the new ProfilerState and trigger corresponding action.
C
chenjian 已提交
648

Z
Zhang Ting 已提交
649 650
        Args:
            num_samples (int|None, optional): Specifies the batch size of every step of the model
651
                that is used to compute throughput when `timer_only` is True. Default: None.
Z
Zhang Ting 已提交
652

C
chenjian 已提交
653 654
        Examples:
            .. code-block:: python
C
chenjian 已提交
655
                :name: code-example6
C
chenjian 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))

                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
669
        """
Z
Zhang Ting 已提交
670 671 672
        benchmark().step(num_samples)
        if self.timer_only:
            return
C
chenjian 已提交
673 674 675 676 677 678 679
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        self.previous_state = self.current_state
        self.step_num += 1
        self.current_state = self.scheduler(self.step_num)
        self._trigger_action()
680 681 682 683
        self.record_event = RecordEvent(
            name="ProfileStep#{}".format(self.step_num),
            event_type=TracerEventType.ProfileStep,
        )
C
chenjian 已提交
684 685
        self.record_event.begin()

Z
Zhang Ting 已提交
686 687 688 689
    def step_info(self, unit=None):
        r"""
        Get statistics for current step. If the function is called at certain iteration
        intervals, the result is the average of all steps between the previous call and
690
        this call. Statistics are as follows:
Z
Zhang Ting 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

        1. reader_cost: the cost of loading data measured in seconds.

        2. batch_cost: the cost of step measured in seconds.

        3. ips(Instance Per Second): the throughput of the model measured in `samples/s`
        or others depends on the `unit`. When `num_samples` of `step()` is None, it is
        measured in `steps/s`.

        Args:
            unit (string, optional): The unit of input data is only used When `num_samples`
                of `step()` is specified as a number. For example, when it is `images`, the unit
                of throughput is `images/s`. Default: None, the unit of throughput is `samples/s`.

        Returns:
            string: A string representing the statistic.

        Examples:
            .. code-block:: python
                :name: code-example-timer2

                import paddle.profiler as profiler
                prof = profiler.Profiler(timer_only=True)
                prof.start()
                for iter in range(20):
                    #train()
                    prof.step()
                    if iter % 10 == 0:
                        print("Iter {}: {}".format(iter, prof.step_info()))
                        # The example does not call the DataLoader, so there is no "reader_cost".
                        # Iter 0:  batch_cost: 0.00001 s ips: 86216.623 steps/s
                        # Iter 10:  batch_cost: 0.00001 s ips: 103645.034 steps/s
                prof.stop()
                # Time Unit: s, IPS Unit: steps/s
                # |                 |       avg       |       max       |       min       |
                # |    batch_cost   |     0.00000     |     0.00002     |     0.00000     |
                # |       ips       |   267846.19437  |   712030.38727  |   45134.16662   |
        """
        if unit is None:
            unit = 'samples'
        return benchmark().step_info(unit)

C
chenjian 已提交
733 734 735 736 737 738 739
    def _trigger_action(self):
        if self.previous_state == ProfilerState.CLOSED:
            if self.current_state == ProfilerState.READY:  # CLOSED -> READY
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # CLOSED -> RECORD
                self.profiler.prepare()
                self.profiler.start()
740 741 742
            if (
                self.current_state == ProfilerState.RECORD_AND_RETURN
            ):  # CLOSED -> RECORD_AND_RETURN
C
chenjian 已提交
743 744 745 746 747 748 749 750 751 752 753 754
                self.profiler.prepare()
                self.profiler.start()

        elif self.previous_state == ProfilerState.READY:
            if self.current_state == ProfilerState.CLOSED:  # READY -> CLOSED
                warn(
                    "Improper schedule: READY->CLOSED, profiler will start and stop without saving data"
                )
                self.profiler.start()
                self.profiler.stop()
            if self.current_state == ProfilerState.RECORD:  # READY -> RECORD
                self.profiler.start()
755 756 757
            if (
                self.current_state == ProfilerState.RECORD_AND_RETURN
            ):  # READY -> RECORD_AND_RETURN
C
chenjian 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
                self.profiler.start()

        elif self.previous_state == ProfilerState.RECORD:
            if self.current_state == ProfilerState.CLOSED:  # RECORD -> CLOSED
                warn(
                    "Improper schedule: RECORD->CLOSED, profiler will not saving data"
                )
                self.profiler.stop()

            if self.current_state == ProfilerState.READY:  # RECORD -> READY
                warn(
                    "Improper schedule: RECORD->READY, profiler will stop and re-prepare"
                )
                self.profiler.stop()
                self.profiler.prepare()
773 774 775
            if (
                self.current_state == ProfilerState.RECORD_AND_RETURN
            ):  # RECORD -> RECORD_AND_RETURN
C
chenjian 已提交
776 777 778 779
                pass

        else:
            assert self.previous_state == ProfilerState.RECORD_AND_RETURN
780 781 782
            if (
                self.current_state == ProfilerState.CLOSED
            ):  # RECORD_AND_RETURN -> CLOSED
C
chenjian 已提交
783
                self.profiler_result = self.profiler.stop()
784 785 786
            if (
                self.current_state == ProfilerState.READY
            ):  # RECORD_AND_RETURN -> READY
C
chenjian 已提交
787 788
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
789 790 791
            if (
                self.current_state == ProfilerState.RECORD
            ):  # RECORD_AND_RETURN -> RECORD
C
chenjian 已提交
792 793 794
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
795 796 797
            if (
                self.current_state == ProfilerState.RECORD_AND_RETURN
            ):  # RECORD_AND_RETURN -> RECORD_AND_RETURN
C
chenjian 已提交
798 799 800 801 802 803 804 805
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.on_trace_ready:
                self.on_trace_ready(self)

    def export(self, path="", format="json"):
        r"""
C
chenjian 已提交
806 807 808 809
        Exports the tracing data to file.

        Args:
            path(str): file path of the output.
810
            format(str, optional): output format, can be chosen from ['json', 'pb'], 'json' for chrome tracing and 'pb' for protobuf, default value is 'json'.
C
chenjian 已提交
811

C
chenjian 已提交
812 813 814

        Examples:
            .. code-block:: python
C
chenjian 已提交
815
                :name: code-example7
C
chenjian 已提交
816 817 818 819 820 821 822 823 824 825 826 827

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.export(path="./profiler_data.json", format="json")
C
chenjian 已提交
828 829 830 831
        """
        if self.profiler_result:
            self.profiler_result.save(path, format)

832 833 834 835 836 837 838 839
    def summary(
        self,
        sorted_by=SortedKeys.CPUTotal,
        op_detail=True,
        thread_sep=False,
        time_unit='ms',
        views=None,
    ):
C
chenjian 已提交
840
        r"""
C
chenjian 已提交
841
        Print the Summary table. Currently support overview, model, distributed, operator, memory manipulation and userdefined summary.
C
chenjian 已提交
842

C
chenjian 已提交
843 844 845 846 847
        Args:
            sorted_by( :ref:`SortedKeys <api_paddle_profiler_SortedKeys>` , optional): how to rank the op table items, default value is SortedKeys.CPUTotal.
            op_detail(bool, optional): expand each operator detail information, default value is True.
            thread_sep(bool, optional): print op table each thread, default value is False.
            time_unit(str, optional): time unit for display, can be chosen form ['s', 'ms', 'us', 'ns'], default value is 'ms'.
848
            views(SummaryView|list[SummaryView], optional): summary tables to print, default to None means all views to be printed.
C
chenjian 已提交
849 850 851

        Examples:
            .. code-block:: python
C
chenjian 已提交
852
                :name: code-example8
C
chenjian 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.summary(sorted_by=profiler.SortedKeys.CPUTotal, op_detail=True, thread_sep=False, time_unit='ms')
C
chenjian 已提交
866
        """
867 868 869
        if isinstance(views, SummaryView):
            views = [views]

C
chenjian 已提交
870 871 872
        if self.profiler_result:
            statistic_data = StatisticData(
                self.profiler_result.get_data(),
873 874
                self.profiler_result.get_extra_info(),
            )
C
chenjian 已提交
875
            print(
876 877 878 879 880 881 882 883 884
                _build_table(
                    statistic_data,
                    sorted_by=sorted_by,
                    op_detail=op_detail,
                    thread_sep=thread_sep,
                    time_unit=time_unit,
                    views=views,
                )
            )
C
chenjian 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916


def get_profiler(config_path):
    try:
        with open(config_path, 'r') as filehandle:
            config_dict = json.load(filehandle)
    except Exception as e:
        print('Load config file for profiler error: {}'.format(e))
        print('Use default parameters instead.')
        return Profiler()
    translated_config_dict = {}
    if "targets" in config_dict:
        try:
            translated_config_dict['targets'] = []
            for target in config_dict['targets']:
                if target.lower() == "cpu":
                    translated_config_dict['targets'].append(ProfilerTarget.CPU)
                elif target.lower() == 'gpu':
                    translated_config_dict['targets'].append(ProfilerTarget.GPU)
        except:
            print('Set targets parameter error, use default parameter instead.')
            translated_config_dict['targets'] = None
    if "scheduler" in config_dict:
        try:
            if isinstance(config_dict['scheduler'], dict):
                for key, value in config_dict['scheduler'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['scheduler'] = method(
917 918
                            *value['args'], **value['kwargs']
                        )
C
chenjian 已提交
919 920 921 922
                    else:
                        translated_config_dict['scheduler'] = method
            else:
                translated_config_dict['scheduler'] = [
923 924
                    config_dict['scheduler'][0],
                    config_dict['scheduler'][1],
C
chenjian 已提交
925 926 927 928
                ]

        except:
            print(
929 930
                'Set scheduler parameter error, use default parameter instead.'
            )
C
chenjian 已提交
931 932 933 934 935 936 937 938 939 940 941
            translated_config_dict['scheduler'] = None
    if "on_trace_ready" in config_dict:
        try:
            if isinstance(config_dict['on_trace_ready'], dict):
                for key, value in config_dict['on_trace_ready'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['on_trace_ready'] = method(
942 943
                            *value['args'], **value['kwargs']
                        )
C
chenjian 已提交
944 945 946 947 948 949 950 951 952 953 954 955
                    else:
                        translated_config_dict['on_trace_ready'] = method
        except:
            print(
                'Set on_trace_ready parameter error, use default parameter instead.'
            )
            translated_config_dict['on_trace_ready'] = None
    if "timer_only" in config_dict:
        if isinstance(config_dict['timer_only'], bool):
            translated_config_dict['timer_only'] = config_dict['timer_only']
        else:
            print(
956 957
                'Set timer_only parameter error, use default parameter instead.'
            )
C
chenjian 已提交
958 959

    return Profiler(**translated_config_dict)