layer_norm_op.cc 10.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
F
furnace 已提交
16
#include <string>
17

H
hong 已提交
18
#include "paddle/fluid/framework/op_registry.h"
C
chengduoZH 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
24 25 26 27 28 29 30 31 32 33 34 35
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
36 37 38
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Mean"), "Output", "Mean", "LayerNorm");
39 40
    OP_INOUT_CHECK(
        ctx->HasOutput("Variance"), "Output", "Variance", "LayerNorm");
C
chengduoZH 已提交
41

C
chengduoZH 已提交
42 43
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
44
    PADDLE_ENFORCE_LT(
45 46
        begin_norm_axis,
        x_dim.size(),
47 48 49 50
        platform::errors::InvalidArgument(
            "'begin_norm_axis' must be less than the dimensions of X,"
            "But received 'begin_norm_axis' is [%d],"
            "received the dimensions of X is [%d].",
51 52
            begin_norm_axis,
            x_dim.size()));
C
chengduoZH 已提交
53

54
    auto matrix_dim = phi::flatten_to_2d(x_dim, begin_norm_axis);
C
chengduoZH 已提交
55
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
56
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
57
    if (ctx->HasInput("Scale")) {
58 59
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(),
                        1,
60 61 62 63 64
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Scale) must be 1, but "
                            "received dimensions of"
                            "Input(Scale) is [%d]",
                            ctx->GetInputDim("Scale").size()));
P
phlrain 已提交
65 66

      if (ctx->IsRuntime()) {
67
        PADDLE_ENFORCE_EQ(
68 69
            ctx->GetInputDim("Scale")[0],
            right,
70 71 72 73 74 75
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Scale) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Scale) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Scale) is [%d].",
76 77
                ctx->GetInputDim("Scale")[0],
                right));
P
phlrain 已提交
78
      }
C
chengduoZH 已提交
79 80
    }
    if (ctx->HasInput("Bias")) {
81 82
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(),
                        1,
83 84 85 86 87
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Bias) must be 1, but "
                            "received dimensions of"
                            "Input(Bias) is [%d]",
                            ctx->GetInputDim("Bias").size()));
P
phlrain 已提交
88
      if (ctx->IsRuntime()) {
89
        PADDLE_ENFORCE_EQ(
90 91
            ctx->GetInputDim("Bias")[0],
            right,
92 93 94 95 96 97
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Bias) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Bias) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Bias) is [%d].",
98 99
                ctx->GetInputDim("Scale")[0],
                right));
P
phlrain 已提交
100
      }
C
chengduoZH 已提交
101
    }
C
chengduoZH 已提交
102

C
chengduoZH 已提交
103
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
104 105
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
106 107
    ctx->ShareLoD("X", "Y");
  }
108 109 110

 protected:
  framework::OpKernelType GetExpectedKernelType(
F
furnace 已提交
111 112
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
113 114

#ifdef PADDLE_WITH_MKLDNN
115
    int begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
J
jiahongyu 已提交
116
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
117
        begin_norm_axis == ctx.Input<Tensor>("X")->dims().size() - 1) {
J
jiahongyu 已提交
118 119 120 121
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
122 123 124
    }
#endif

J
jiahongyu 已提交
125
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
126
  }
C
chengduoZH 已提交
127 128 129 130
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
131
  void Make() override {
Y
yuyang18 已提交
132
    AddInput("X", "The input tensor.");
C
chengduoZH 已提交
133
    AddInput("Scale",
Y
yuyang18 已提交
134
             "(optional) Scale is a 1-dimensional tensor of size "
C
chengduoZH 已提交
135 136 137
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
C
chengduoZH 已提交
138
    AddInput("Bias",
Y
yuyang18 已提交
139
             "(optional) Bias is a 1-dimensional tensor of size "
C
chengduoZH 已提交
140 141 142
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
Y
yuyang18 已提交
143 144 145
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Variance", "Variance of the current mini batch.")
C
chengduoZH 已提交
146 147 148
        .AsIntermediate();

    AddAttr<float>("epsilon",
Y
yuyang18 已提交
149
                   "Constant for numerical stability [default 1e-5].")
C
chengduoZH 已提交
150 151
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
152 153
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f,
                            true,
154 155 156 157
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
C
chengduoZH 已提交
158
        });
C
chengduoZH 已提交
159
    AddAttr<int>("begin_norm_axis",
Y
yuyang18 已提交
160
                 "the axis of `begin_norm_axis ... Rank(X) - 1` will be "
C
chengduoZH 已提交
161
                 "normalized. `begin_norm_axis` splits the tensor(`X`) to a "
Y
yuyang18 已提交
162
                 "matrix [N,H]. [default 1].")
C
chengduoZH 已提交
163 164
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
165 166
          PADDLE_ENFORCE_GT(begin_norm_axis,
                            0,
167 168 169 170
                            platform::errors::InvalidArgument(
                                "'begin_norm_axis' in Op(LayerNorm) should be"
                                "greater than zero. But received [%d].",
                                begin_norm_axis));
C
chengduoZH 已提交
171
        });
C
chengduoZH 已提交
172
    AddComment(R"DOC(
Y
yuyang18 已提交
173 174 175 176 177 178 179 180
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
C
chengduoZH 已提交
181 182 183 184 185 186 187 188 189 190
)DOC");
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
191 192
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "LayerNormGrad");
193 194 195 196 197
    OP_INOUT_CHECK(
        ctx->HasInput("Variance"), "Input", "Variance", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")),
                   "Input",
                   framework::GradVarName("Y"),
198
                   "LayerNormGrad");
C
chengduoZH 已提交
199 200 201

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
202
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
203 204
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
205 206
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
207 208
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
209
      ctx->SetOutputDim(framework::GradVarName("Bias"),
210
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
211 212 213 214 215 216 217
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
218 219 220
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::NotFound("Y@GRAD of LayerNorm Op is not found."));
C
chengduoZH 已提交
221 222 223 224 225 226
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
227 228
    PADDLE_ENFORCE_NOT_NULL(
        t, platform::errors::NotFound("Y@GRAD of LayerNorm Op is not found."));
F
furnace 已提交
229 230 231 232 233

    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

    return framework::OpKernelType(
234 235 236 237
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.GetPlace(),
        layout,
        library);
C
chengduoZH 已提交
238 239 240
  }
};

H
hong 已提交
241 242
template <typename T>
class LayerNormGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
243
 public:
H
hong 已提交
244
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
245 246

 protected:
247
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
248
    op->SetType("layer_norm_grad");
H
hong 已提交
249 250 251 252 253 254
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mean", this->Output("Mean"));
    op->SetInput("Variance", this->Output("Variance"));
    if (this->HasInput("Scale")) {
      op->SetInput("Scale", this->Input("Scale"));
      op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
S
sneaxiy 已提交
255 256
    }

H
hong 已提交
257
    if (this->HasInput("Bias")) {
258
      op->SetInput("Bias", this->Input("Bias"));
H
hong 已提交
259
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
260 261
    }

H
hong 已提交
262 263 264
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
265 266 267
  }
};

268
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LayerNormGradNoNeedBufferVarInferer,
269 270
                                    "Bias");

C
chengduoZH 已提交
271 272 273 274
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
275 276 277
REGISTER_OPERATOR(layer_norm,
                  ops::LayerNormOp,
                  ops::LayerNormOpMaker,
H
hong 已提交
278 279
                  ops::LayerNormGradOpMaker<paddle::framework::OpDesc>,
                  ops::LayerNormGradOpMaker<paddle::imperative::OpBase>);
280 281
REGISTER_OPERATOR(layer_norm_grad,
                  ops::LayerNormGradOp,
282
                  ops::LayerNormGradNoNeedBufferVarInferer);