batch_norm_grad_kernel.cc 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/batch_norm_grad_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/norm_utils.h"

namespace phi {

template <typename T>
static int CalculateInvBNY(xpu::Context *ctx,
                           T *x,
                           const T *scale,
                           const T *bias,
                           const T *mean,
                           const T *variance,
                           const int N,
                           const int C,
                           const int M,
                           const T *y) {
  PADDLE_ENFORCE_EQ(x,
                    y,
                    phi::errors::InvalidArgument(
                        "X and Y should be inplaced in inplace mode"));
  std::vector<int> tensor_shape_vec({N, C, M});
  std::vector<int> array_shape_vec({1, C, 1});
  // y - bias
  int r1 =
      xpu::broadcast_sub<T>(ctx, bias, y, x, array_shape_vec, tensor_shape_vec);
  // (y - bias) / scale
  int r2 = xpu::broadcast_div<T>(
      ctx, scale, x, x, array_shape_vec, tensor_shape_vec);
  // (y - bias) / scale / variance
  int r3 = xpu::broadcast_div<T>(
      ctx, variance, x, x, array_shape_vec, tensor_shape_vec);
  // (y - bias) / scale / variance + mean
  int r4 =
      xpu::broadcast_add<T>(ctx, mean, x, x, array_shape_vec, tensor_shape_vec);

  return r1 + r2 + r3 + r4;
}

template <typename T>
static int CalculateInvVar(xpu::Context *ctx,
                           const T *var,
                           const T epsilon,
                           const int C,
                           T *epsilon_data,
                           T *inv_var) {
  int r1 = constant(ctx, epsilon_data, 1, epsilon);
  std::vector<int> tensor_shape_vec({C});
  std::vector<int> array_shape_vec({1});
  int r2 = xpu::broadcast_add<T>(
      ctx, epsilon_data, var, inv_var, array_shape_vec, tensor_shape_vec);
  int r3 = xpu::rsqrt<T>(ctx, inv_var, inv_var, C);
  return r1 + r2 + r3;
}

template <typename T, typename Context>
void BatchNormGradKernel(const Context &dev_ctx,
                         const DenseTensor &x,
                         const DenseTensor &scale,
                         const DenseTensor &bias,
                         const paddle::optional<DenseTensor> &mean,
                         const paddle::optional<DenseTensor> &variance,
                         const DenseTensor &saved_mean,
                         const DenseTensor &saved_variance,
                         const paddle::optional<DenseTensor> &reserve_space,
                         const DenseTensor &y_grad,
                         float momentum,
                         float epsilon,
                         const std::string &data_layout,
                         bool is_test,
                         bool use_global_stats,
                         bool trainable_statistics,
                         bool fuse_with_relu,
                         DenseTensor *x_grad,
                         DenseTensor *scale_grad,
                         DenseTensor *bias_grad) {
  const auto *d_y = &y_grad;
  PADDLE_ENFORCE_EQ(data_layout == "NCHW" || data_layout == "NHWC",
                    true,
                    phi::errors::InvalidArgument(
                        "The 'data_layout' attribute must be NCHW or NHWC. "
                        "But recevived 'data_layout' is [%s].",
                        data_layout));

  const auto data_layout_val =
      paddle::framework::StringToDataLayout(data_layout);

  use_global_stats = is_test || use_global_stats;

  // batch_norm with inplace as false will take X as grad input, which
  // is same as cuDNN batch_norm backward calculation, batch_norm
  // with inplace as true only take Y as input and X should be calculate
  // by inverse operation of batch_norm on Y
  bool is_inplace = false;
  if (x_grad) {
    PADDLE_ENFORCE_NE(x_grad,
                      d_y,
                      phi::errors::InvalidArgument(
                          "X@GRAD and Y@GRAD inplaced in non-inplace mode"));
  }

  const auto &x_dims = x.dims();
  PADDLE_ENFORCE_EQ(
      x_dims.size() >= 2 && x_dims.size() <= 5,
      true,
      phi::errors::InvalidArgument(
          "The size of input's dimensions should be between 2 and 5"
          "But received: the size of input's dimensions is [%d]",
          x_dims.size()));

  int N = -1, C = -1, H = -1, W = -1, D = -1;
  funcs::ExtractNCWHD(x_dims, data_layout_val, &N, &C, &H, &W, &D);
  N = (N == 0) ? 1 : N;
  C = (C == 0) ? 1 : C;
  H = (H == 0) ? 1 : H;
  W = (W == 0) ? 1 : W;

  const auto *x_data = x.data<T>();
  const auto *d_y_data = y_grad.data<T>();
  const auto *scale_data = scale.data<float>();

  // init output
  T *x_grad_data = nullptr;
  T *bias_grad_data = nullptr;
  T *scale_grad_data = nullptr;
  if (x_grad) {
    x_grad_data = dev_ctx.template Alloc<T>(x_grad);
  }
  if (scale_grad && bias_grad) {
    scale_grad_data = dev_ctx.template Alloc<T>(scale_grad);
    bias_grad_data = dev_ctx.template Alloc<T>(bias_grad);
  }

  PADDLE_ENFORCE_EQ(
      scale.dims().size(),
      1UL,
      phi::errors::InvalidArgument(
          "The size of scale's dimensions must equal to 1. But received: "
          "the size of scale's dimensions is [%d], the dimensions of scale "
          "is [%s].",
          scale.dims().size(),
          scale.dims()));
  PADDLE_ENFORCE_EQ(
      scale.dims()[0],
      C,
      phi::errors::InvalidArgument(
          "The first dimension of scale must equal to Channels[%d]. But "
          "received: the first dimension of scale is [%d]",
          C,
          scale.dims()[0]));

  xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());

  const auto *global_mean = mean.get_ptr();
  const auto *global_var = variance.get_ptr();

  // TODO(guozibin): hadle the situation case of N * H * W = 1
  if (is_inplace) {
    float *global_inv_std_data = nullptr;
    if (use_global_stats) {
      global_inv_std_data =
          RAII_GUARD.alloc_l3_or_gm<float>(global_var->numel());
      float *epsilon_data = RAII_GUARD.alloc_l3_or_gm<float>(1);
      int r1 = CalculateInvVar(dev_ctx.x_context(),
                               global_var->data<float>(),
                               epsilon,
                               C,
                               epsilon_data,
                               global_inv_std_data);
186 187
      PADDLE_ENFORCE_XDNN_SUCCESS(r1,
                                  "batch_norm_grad CalculateInvVar function");
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    }

    // Here is a trick, x is a const input,
    // but trans to a non-const var, is it risky?
    auto px = x;
    auto *inv_std_data =
        use_global_stats ? global_inv_std_data : saved_variance.data<float>();
    auto *mean_data = use_global_stats ? global_mean->data<float>()
                                       : saved_mean.data<float>();
    int r2 = CalculateInvBNY(dev_ctx.x_context(),
                             px.data<T>(),
                             scale.data<float>(),
                             bias.data<float>(),
                             mean_data,
                             inv_std_data,
                             N,
                             C,
                             H * W,
                             x.data<T>());
207
    PADDLE_ENFORCE_XDNN_SUCCESS(r2, "batch_norm_grad CalculateInvBNY function");
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
  }

  int r3;
  bool is_nchw = data_layout == "NCHW";
  if (use_global_stats) {
    r3 = xpu::batch_norm_grad<T>(dev_ctx.x_context(),
                                 x_data,
                                 d_y_data,
                                 x_grad_data,
                                 N,
                                 C,
                                 H,
                                 W,
                                 scale_data,
                                 nullptr,
                                 nullptr,
                                 scale_grad_data,
                                 bias_grad_data,
                                 is_nchw,
                                 global_mean->data<float>(),
                                 global_var->data<float>(),
                                 epsilon);
  } else {
    if (!x_grad) {
      x_grad_data = RAII_GUARD.alloc_l3_or_gm<T>(x.numel());
    }
    if (!scale_grad) {
      scale_grad_data = RAII_GUARD.alloc_l3_or_gm<float>(C);
    }
    if (!bias_grad_data) {
      bias_grad_data = RAII_GUARD.alloc_l3_or_gm<float>(C);
    }
    r3 = xpu::batch_norm_grad<T>(dev_ctx.x_context(),
                                 x_data,
                                 d_y_data,
                                 x_grad_data,
                                 N,
                                 C,
                                 H,
                                 W,
                                 scale_data,
                                 saved_mean.data<float>(),
                                 saved_variance.data<float>(),
                                 scale_grad_data,
                                 bias_grad_data,
                                 is_nchw);
  }
255
  PADDLE_ENFORCE_XDNN_SUCCESS(r3, "batch_norm_grad");
256 257 258 259 260 261
}

}  // namespace phi

PD_REGISTER_KERNEL(
    batch_norm_grad, XPU, ALL_LAYOUT, phi::BatchNormGradKernel, float) {}