// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/batch_norm_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/norm_utils.h" namespace phi { template static int CalculateInvBNY(xpu::Context *ctx, T *x, const T *scale, const T *bias, const T *mean, const T *variance, const int N, const int C, const int M, const T *y) { PADDLE_ENFORCE_EQ(x, y, phi::errors::InvalidArgument( "X and Y should be inplaced in inplace mode")); std::vector tensor_shape_vec({N, C, M}); std::vector array_shape_vec({1, C, 1}); // y - bias int r1 = xpu::broadcast_sub(ctx, bias, y, x, array_shape_vec, tensor_shape_vec); // (y - bias) / scale int r2 = xpu::broadcast_div( ctx, scale, x, x, array_shape_vec, tensor_shape_vec); // (y - bias) / scale / variance int r3 = xpu::broadcast_div( ctx, variance, x, x, array_shape_vec, tensor_shape_vec); // (y - bias) / scale / variance + mean int r4 = xpu::broadcast_add(ctx, mean, x, x, array_shape_vec, tensor_shape_vec); return r1 + r2 + r3 + r4; } template static int CalculateInvVar(xpu::Context *ctx, const T *var, const T epsilon, const int C, T *epsilon_data, T *inv_var) { int r1 = constant(ctx, epsilon_data, 1, epsilon); std::vector tensor_shape_vec({C}); std::vector array_shape_vec({1}); int r2 = xpu::broadcast_add( ctx, epsilon_data, var, inv_var, array_shape_vec, tensor_shape_vec); int r3 = xpu::rsqrt(ctx, inv_var, inv_var, C); return r1 + r2 + r3; } template void BatchNormGradKernel(const Context &dev_ctx, const DenseTensor &x, const DenseTensor &scale, const DenseTensor &bias, const paddle::optional &mean, const paddle::optional &variance, const DenseTensor &saved_mean, const DenseTensor &saved_variance, const paddle::optional &reserve_space, const DenseTensor &y_grad, float momentum, float epsilon, const std::string &data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu, DenseTensor *x_grad, DenseTensor *scale_grad, DenseTensor *bias_grad) { const auto *d_y = &y_grad; PADDLE_ENFORCE_EQ(data_layout == "NCHW" || data_layout == "NHWC", true, phi::errors::InvalidArgument( "The 'data_layout' attribute must be NCHW or NHWC. " "But recevived 'data_layout' is [%s].", data_layout)); const auto data_layout_val = paddle::framework::StringToDataLayout(data_layout); use_global_stats = is_test || use_global_stats; // batch_norm with inplace as false will take X as grad input, which // is same as cuDNN batch_norm backward calculation, batch_norm // with inplace as true only take Y as input and X should be calculate // by inverse operation of batch_norm on Y bool is_inplace = false; if (x_grad) { PADDLE_ENFORCE_NE(x_grad, d_y, phi::errors::InvalidArgument( "X@GRAD and Y@GRAD inplaced in non-inplace mode")); } const auto &x_dims = x.dims(); PADDLE_ENFORCE_EQ( x_dims.size() >= 2 && x_dims.size() <= 5, true, phi::errors::InvalidArgument( "The size of input's dimensions should be between 2 and 5" "But received: the size of input's dimensions is [%d]", x_dims.size())); int N = -1, C = -1, H = -1, W = -1, D = -1; funcs::ExtractNCWHD(x_dims, data_layout_val, &N, &C, &H, &W, &D); N = (N == 0) ? 1 : N; C = (C == 0) ? 1 : C; H = (H == 0) ? 1 : H; W = (W == 0) ? 1 : W; const auto *x_data = x.data(); const auto *d_y_data = y_grad.data(); const auto *scale_data = scale.data(); // init output T *x_grad_data = nullptr; T *bias_grad_data = nullptr; T *scale_grad_data = nullptr; if (x_grad) { x_grad_data = dev_ctx.template Alloc(x_grad); } if (scale_grad && bias_grad) { scale_grad_data = dev_ctx.template Alloc(scale_grad); bias_grad_data = dev_ctx.template Alloc(bias_grad); } PADDLE_ENFORCE_EQ( scale.dims().size(), 1UL, phi::errors::InvalidArgument( "The size of scale's dimensions must equal to 1. But received: " "the size of scale's dimensions is [%d], the dimensions of scale " "is [%s].", scale.dims().size(), scale.dims())); PADDLE_ENFORCE_EQ( scale.dims()[0], C, phi::errors::InvalidArgument( "The first dimension of scale must equal to Channels[%d]. But " "received: the first dimension of scale is [%d]", C, scale.dims()[0])); xpu::ctx_guard RAII_GUARD(dev_ctx.x_context()); const auto *global_mean = mean.get_ptr(); const auto *global_var = variance.get_ptr(); // TODO(guozibin): hadle the situation case of N * H * W = 1 if (is_inplace) { float *global_inv_std_data = nullptr; if (use_global_stats) { global_inv_std_data = RAII_GUARD.alloc_l3_or_gm(global_var->numel()); float *epsilon_data = RAII_GUARD.alloc_l3_or_gm(1); int r1 = CalculateInvVar(dev_ctx.x_context(), global_var->data(), epsilon, C, epsilon_data, global_inv_std_data); PADDLE_ENFORCE_XDNN_SUCCESS(r1, "batch_norm_grad CalculateInvVar function"); } // Here is a trick, x is a const input, // but trans to a non-const var, is it risky? auto px = x; auto *inv_std_data = use_global_stats ? global_inv_std_data : saved_variance.data(); auto *mean_data = use_global_stats ? global_mean->data() : saved_mean.data(); int r2 = CalculateInvBNY(dev_ctx.x_context(), px.data(), scale.data(), bias.data(), mean_data, inv_std_data, N, C, H * W, x.data()); PADDLE_ENFORCE_XDNN_SUCCESS(r2, "batch_norm_grad CalculateInvBNY function"); } int r3; bool is_nchw = data_layout == "NCHW"; if (use_global_stats) { r3 = xpu::batch_norm_grad(dev_ctx.x_context(), x_data, d_y_data, x_grad_data, N, C, H, W, scale_data, nullptr, nullptr, scale_grad_data, bias_grad_data, is_nchw, global_mean->data(), global_var->data(), epsilon); } else { if (!x_grad) { x_grad_data = RAII_GUARD.alloc_l3_or_gm(x.numel()); } if (!scale_grad) { scale_grad_data = RAII_GUARD.alloc_l3_or_gm(C); } if (!bias_grad_data) { bias_grad_data = RAII_GUARD.alloc_l3_or_gm(C); } r3 = xpu::batch_norm_grad(dev_ctx.x_context(), x_data, d_y_data, x_grad_data, N, C, H, W, scale_data, saved_mean.data(), saved_variance.data(), scale_grad_data, bias_grad_data, is_nchw); } PADDLE_ENFORCE_XDNN_SUCCESS(r3, "batch_norm_grad"); } } // namespace phi PD_REGISTER_KERNEL( batch_norm_grad, XPU, ALL_LAYOUT, phi::BatchNormGradKernel, float) {}