mq2007.py 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MQ2007 dataset

MQ2007 is a query set from Million Query track of TREC 2007. There are about 1700 queries in it with labeled documents. In MQ2007, the 5-fold cross
validation strategy is adopted and the 5-fold partitions are included in the package. In each fold, there are three subsets for learning: training set,
D
dzhwinter 已提交
19
validation set and testing set.
20

D
dzhwinter 已提交
21
MQ2007 dataset from website
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar and parse training set and test set into paddle reader creators

"""

import os
import random
import functools
import rarfile
from common import download
import numpy as np

# URL = "http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar"
URL = "http://www.bigdatalab.ac.cn/benchmark/upload/download_source/7b6dbbe2-842c-11e4-a536-bcaec51b9163_MQ2007.rar"
MD5 = "7be1640ae95c6408dab0ae7207bdc706"


def __initialize_meta_info__():
D
dzhwinter 已提交
39
    """
40 41
  download and extract the MQ2007 dataset
  """
D
dzhwinter 已提交
42 43
    fn = fetch()
    rar = rarfile.RarFile(fn)
44
    return rar
45 46 47


class Query(object):
D
dzhwinter 已提交
48
    """
49 50 51 52 53 54 55 56 57 58 59 60 61 62
  queries used for learning to rank algorithms. It is created from relevance scores,  query-document feature vectors

  Parameters:
  ----------
  query_id : int
    query_id in dataset, mapping from query to relevance documents
  relevance_score : int 
    relevance score of query and document pair
  feature_vector : array, dense feature
    feature in vector format
  description : string
    comment section in query doc pair data
  """

D
dzhwinter 已提交
63 64 65 66 67 68 69 70 71 72 73 74
    def __init__(self,
                 query_id=-1,
                 relevance_score=-1,
                 feature_vector=None,
                 description=""):
        self.query_id = query_id
        self.relevance_score = relevance_score
        if feature_vector is None:
            self.feature_vector = []
        else:
            self.feature_vector = feature_vector
        self.description = description
75

D
dzhwinter 已提交
76 77 78 79 80 81 82 83
    def __str__(self):
        string = "%s %s %s" % (str(self.relevance_score), str(self.query_id),
                               " ".join(str(f) for f in self.feature_vector))
        return string

    # @classmethod
    def _parse_(self, text):
        """
84 85
    parse line into Query
    """
D
dzhwinter 已提交
86 87 88 89
        comment_position = text.find('#')
        line = text[:comment_position].strip()
        self.description = text[comment_position + 1:].strip()
        parts = line.split()
90 91 92 93
        if len(parts) != 48:
            sys.stdout.write("expect 48 space split parts, get %d" %
                             (len(parts)))
            return None
D
dzhwinter 已提交
94 95 96 97 98 99 100 101
        # format : 0 qid:10 1:0.000272 2:0.000000 .... 
        self.relevance_score = int(parts[0])
        self.query_id = int(parts[1].split(':')[1])
        for p in parts[2:]:
            pair = p.split(':')
            self.feature_vector.append(float(pair[1]))
        return self

102 103

class QueryList(object):
D
dzhwinter 已提交
104
    """
105 106
  group query into list, every item in list is a Query
  """
D
dzhwinter 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    def __init__(self, querylist=None):
        self.query_id = -1
        if querylist is None:
            self.querylist = []
        else:
            self.querylist = querylist
            for query in self.querylist:
                if self.query_id == -1:
                    self.query_id = query.query_id
                else:
                    if self.query_id != query.query_id:
                        raise ValueError("query in list must be same query_id")

    def __iter__(self):
        for query in self.querylist:
            yield query

    def __len__(self):
        return len(self.querylist)

128 129 130
    def __getitem__(self, i):
        return self.querylist[i]

D
dzhwinter 已提交
131 132 133 134 135 136
    def _correct_ranking_(self):
        if self.querylist is None:
            return
        self.querylist.sort(key=lambda x: x.relevance_score, reverse=True)

    def _add_query(self, query):
137
        if self.query_id == -1:
D
dzhwinter 已提交
138
            self.query_id = query.query_id
139
        else:
D
dzhwinter 已提交
140 141 142
            if self.query_id != query.query_id:
                raise ValueError("query in list must be same query_id")
        self.querylist.append(query)
143 144


145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def gen_plain_txt(querylist):
    """
  gen plain text in list for other usage
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList

  return :
  ------
  query_id : np.array, shape=(samples_num, )
  label : np.array, shape=(samples_num, )
  querylist : np.array, shape=(samples_num, feature_dimension)
    """
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    querylist._correct_ranking_()
    for query in querylist:
        yield querylist.query_id, query.relevance_score, np.array(
            query.feature_vector)


def gen_point(querylist):
    """
  gen item in list for point-wise learning to rank algorithm
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList

  return :
  ------
  label : np.array, shape=(samples_num, )
  querylist : np.array, shape=(samples_num, feature_dimension)
  """
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    querylist._correct_ranking_()
    for query in querylist:
        yield query.relevance_score, np.array(query.feature_vector)


185
def gen_pair(querylist, partial_order="full"):
D
dzhwinter 已提交
186
    """
187 188 189 190 191
  gen pair for pair-wise learning to rank algorithm
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList
  pairtial_order : "full" or "neighbour"
192
    there is redudant in all possiable pair combinations, which can be simplifed
193 194 195 196 197 198 199 200
  gen pairs for neighbour items or the full partial order pairs

  return :
  ------
  label : np.array, shape=(1)
  query_left : np.array, shape=(1, feature_dimension)
  query_right : same as left
  """
D
dzhwinter 已提交
201 202 203
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    querylist._correct_ranking_()
204 205 206
    labels = []
    docpairs = []

D
dzhwinter 已提交
207
    # C(n,2)
208 209 210 211
    for i in range(len(querylist)):
        query_left = querylist[i]
        for j in range(i + 1, len(querylist)):
            query_right = querylist[j]
D
dzhwinter 已提交
212
            if query_left.relevance_score > query_right.relevance_score:
213 214 215 216 217 218 219 220 221 222 223 224 225
                labels.append(1)
                docpairs.append([
                    np.array(query_left.feature_vector),
                    np.array(query_right.feature_vector)
                ])
            elif query_left.relevance_score < query_right.relevance_score:
                labels.append(1)
                docpairs.append([
                    np.array(query_right.feature_vector),
                    np.array(query_left.feature_vector)
                ])
    for label, pair in zip(labels, docpairs):
        yield label, pair[0], pair[1]
D
dzhwinter 已提交
226

227 228

def gen_list(querylist):
D
dzhwinter 已提交
229
    """
D
dzhwinter 已提交
230
  gen item in list for list-wise learning to rank algorithm
231 232 233 234 235 236 237 238 239
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList

  return :
  ------
  label : np.array, shape=(samples_num, )
  querylist : np.array, shape=(samples_num, feature_dimension)
  """
D
dzhwinter 已提交
240 241
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
242
    querylist._correct_ranking_()
D
dzhwinter 已提交
243 244 245
    relevance_score_list = [query.relevance_score for query in querylist]
    feature_vector_list = [query.feature_vector for query in querylist]
    yield np.array(relevance_score_list).T, np.array(feature_vector_list)
246 247


248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
def query_filter(querylists):
    """
    filter query get only document with label 0.
    label 0, 1, 2 means the relevance score document with query
    parameters :
      querylist : QueyList list

    return :
      querylist : QueyList list
    """
    filter_query = []
    for querylist in querylists:
        relevance_score_list = [query.relevance_score for query in querylist]
        if sum(relevance_score_list) != .0:
            filter_query.append(querylist)
    return filter_query


266
def load_from_text(filepath, shuffle=True, fill_missing=-1):
D
dzhwinter 已提交
267
    """
268 269
  parse data file into querys
  """
D
dzhwinter 已提交
270 271 272 273
    prev_query_id = -1
    querylists = []
    querylist = None
    fn = __initialize_meta_info__()
274
    with fn.open(os.path.join(fn, filepath)) as f:
D
dzhwinter 已提交
275 276 277
        for line in f:
            query = Query()
            query = query._parse_(line)
278 279
            if query == None:
                continue
D
dzhwinter 已提交
280 281 282 283 284 285
            if query.query_id != prev_query_id:
                if querylist is not None:
                    querylists.append(querylist)
                querylist = QueryList()
                prev_query_id = query.query_id
            querylist._add_query(query)
286 287
    if querylist is not None:
        querylists.append(querylist)
D
dzhwinter 已提交
288 289 290
    if shuffle == True:
        random.shuffle(querylists)
    return querylists
291 292 293


def __reader__(filepath, format="pairwise", shuffle=True, fill_missing=-1):
D
dzhwinter 已提交
294
    """
295 296 297 298 299 300 301 302 303 304 305 306
  Parameters
  --------
  filename : string
  shuffle : shuffle query-doc pair under the same query
  fill_missing : fill the missing value. default in MQ2007 is -1
  
  Returns
  ------
  yield
    label query_left, query_right  # format = "pairwise"
    label querylist # format = "listwise"
  """
307 308 309
    querylists = query_filter(
        load_from_text(
            filepath, shuffle=shuffle, fill_missing=fill_missing))
D
dzhwinter 已提交
310
    for querylist in querylists:
311 312 313 314 315
        if format == "plain_txt":
            yield next(gen_plain_txt(querylist))
        elif format == "pointwise":
            yield next(gen_point(querylist))
        elif format == "pairwise":
D
dzhwinter 已提交
316 317 318 319 320 321 322
            for pair in gen_pair(querylist):
                yield pair
        elif format == "listwise":
            yield next(gen_list(querylist))


train = functools.partial(__reader__, filepath="MQ2007/MQ2007/Fold1/train.txt")
323
test = functools.partial(__reader__, filepath="MQ2007/MQ2007/Fold1/test.txt")
D
dzhwinter 已提交
324

325 326

def fetch():
D
dzhwinter 已提交
327
    return download(URL, "MQ2007", MD5)
328 329


D
dzhwinter 已提交
330 331
if __name__ == "__main__":
    fetch()
332 333 334 335
    mytest = functools.partial(
        __reader__, filepath="MQ2007/MQ2007/Fold1/sample", format="listwise")
    for label, query in mytest():
        print label, query