mq2007.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MQ2007 dataset

MQ2007 is a query set from Million Query track of TREC 2007. There are about 1700 queries in it with labeled documents. In MQ2007, the 5-fold cross
validation strategy is adopted and the 5-fold partitions are included in the package. In each fold, there are three subsets for learning: training set,
validation set and testing set. 

MQ2007 dataset from 
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar and parse training set and test set into paddle reader creators

"""

import os
import random
import functools
import rarfile
from common import download
import numpy as np

# URL = "http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar"
URL = "http://www.bigdatalab.ac.cn/benchmark/upload/download_source/7b6dbbe2-842c-11e4-a536-bcaec51b9163_MQ2007.rar"
MD5 = "7be1640ae95c6408dab0ae7207bdc706"


def __initialize_meta_info__():
D
dzhwinter 已提交
39
    """
40 41
  download and extract the MQ2007 dataset
  """
D
dzhwinter 已提交
42 43 44 45 46
    fn = fetch()
    rar = rarfile.RarFile(fn)
    dirpath = os.path.dirname(fn)
    rar.extractall(path=dirpath)
    return dirpath
47 48 49


class Query(object):
D
dzhwinter 已提交
50
    """
51 52 53 54 55 56 57 58 59 60 61 62 63 64
  queries used for learning to rank algorithms. It is created from relevance scores,  query-document feature vectors

  Parameters:
  ----------
  query_id : int
    query_id in dataset, mapping from query to relevance documents
  relevance_score : int 
    relevance score of query and document pair
  feature_vector : array, dense feature
    feature in vector format
  description : string
    comment section in query doc pair data
  """

D
dzhwinter 已提交
65 66 67 68 69 70 71 72 73 74 75 76
    def __init__(self,
                 query_id=-1,
                 relevance_score=-1,
                 feature_vector=None,
                 description=""):
        self.query_id = query_id
        self.relevance_score = relevance_score
        if feature_vector is None:
            self.feature_vector = []
        else:
            self.feature_vector = feature_vector
        self.description = description
77

D
dzhwinter 已提交
78 79 80 81 82 83 84 85
    def __str__(self):
        string = "%s %s %s" % (str(self.relevance_score), str(self.query_id),
                               " ".join(str(f) for f in self.feature_vector))
        return string

    # @classmethod
    def _parse_(self, text):
        """
86 87
    parse line into Query
    """
D
dzhwinter 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101
        comment_position = text.find('#')
        line = text[:comment_position].strip()
        self.description = text[comment_position + 1:].strip()
        parts = line.split()
        assert (len(parts) == 48), "expect 48 space split parts, get %d" % (
            len(parts))
        # format : 0 qid:10 1:0.000272 2:0.000000 .... 
        self.relevance_score = int(parts[0])
        self.query_id = int(parts[1].split(':')[1])
        for p in parts[2:]:
            pair = p.split(':')
            self.feature_vector.append(float(pair[1]))
        return self

102 103

class QueryList(object):
D
dzhwinter 已提交
104
    """
105 106
  group query into list, every item in list is a Query
  """
D
dzhwinter 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    def __init__(self, querylist=None):
        self.query_id = -1
        if querylist is None:
            self.querylist = []
        else:
            self.querylist = querylist
            for query in self.querylist:
                if self.query_id == -1:
                    self.query_id = query.query_id
                else:
                    if self.query_id != query.query_id:
                        raise ValueError("query in list must be same query_id")

    def __iter__(self):
        for query in self.querylist:
            yield query

    def __len__(self):
        return len(self.querylist)

    def _correct_ranking_(self):
        if self.querylist is None:
            return
        self.querylist.sort(key=lambda x: x.relevance_score, reverse=True)

    def _add_query(self, query):
134
        if self.query_id == -1:
D
dzhwinter 已提交
135
            self.query_id = query.query_id
136
        else:
D
dzhwinter 已提交
137 138 139
            if self.query_id != query.query_id:
                raise ValueError("query in list must be same query_id")
        self.querylist.append(query)
140 141 142


def gen_pair(querylist, partial_order="full"):
D
dzhwinter 已提交
143
    """
144 145 146 147 148 149 150 151 152 153 154 155 156
  gen pair for pair-wise learning to rank algorithm
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList
  pairtial_order : "full" or "neighbour"
  gen pairs for neighbour items or the full partial order pairs

  return :
  ------
  label : np.array, shape=(1)
  query_left : np.array, shape=(1, feature_dimension)
  query_right : same as left
  """
D
dzhwinter 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    querylist._correct_ranking_()
    # C(n,2)
    if partial_order == "full":
        for i, query_left in enumerate(querylist):
            for j, query_right in enumerate(querylist):
                if query_left.relevance_score > query_right.relevance_score:
                    yield 1, np.array(query_left.feature_vector), np.array(
                        query_right.feature_vector)
                else:
                    yield 1, np.array(query_left.feature_vector), np.array(
                        query_right.feature_vector)

    elif partial_order == "neighbour":
        # C(n)
        k = 0
        while k < len(querylist) - 1:
            query_left = querylist[k]
            query_right = querylist[k + 1]
            if query_left.relevance_score > query_right.relevance_score:
                yield 1, np.array(query_left.feature_vector), np.array(
                    query_right.feature_vector)
            else:
                yield 1, np.array(query_left.feature_vector), np.array(
                    query_right.feature_vector)
            k += 1
    else:
        raise ValueError(
            "unsupport parameter of partial_order, Only can be neighbour or full"
        )

189 190

def gen_list(querylist):
D
dzhwinter 已提交
191
    """
D
dzhwinter 已提交
192
  gen item in list for list-wise learning to rank algorithm
193 194 195 196 197 198 199 200 201
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList

  return :
  ------
  label : np.array, shape=(samples_num, )
  querylist : np.array, shape=(samples_num, feature_dimension)
  """
D
dzhwinter 已提交
202 203 204 205 206 207
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    # querylist._correct_ranking_()
    relevance_score_list = [query.relevance_score for query in querylist]
    feature_vector_list = [query.feature_vector for query in querylist]
    yield np.array(relevance_score_list).T, np.array(feature_vector_list)
208 209 210


def load_from_text(filepath, shuffle=True, fill_missing=-1):
D
dzhwinter 已提交
211
    """
212 213
  parse data file into querys
  """
D
dzhwinter 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    prev_query_id = -1
    querylists = []
    querylist = None
    fn = __initialize_meta_info__()
    with open(os.path.join(fn, filepath)) as f:
        for line in f:
            query = Query()
            query = query._parse_(line)
            if query.query_id != prev_query_id:
                if querylist is not None:
                    querylists.append(querylist)
                querylist = QueryList()
                prev_query_id = query.query_id
            querylist._add_query(query)
    if shuffle == True:
        random.shuffle(querylists)
    return querylists
231 232 233


def __reader__(filepath, format="pairwise", shuffle=True, fill_missing=-1):
D
dzhwinter 已提交
234
    """
235 236 237 238 239 240 241 242 243 244 245 246
  Parameters
  --------
  filename : string
  shuffle : shuffle query-doc pair under the same query
  fill_missing : fill the missing value. default in MQ2007 is -1
  
  Returns
  ------
  yield
    label query_left, query_right  # format = "pairwise"
    label querylist # format = "listwise"
  """
D
dzhwinter 已提交
247 248 249 250 251 252 253 254 255 256 257
    querylists = load_from_text(
        filepath, shuffle=shuffle, fill_missing=fill_missing)
    for querylist in querylists:
        if format == "pairwise":
            for pair in gen_pair(querylist):
                yield pair
        elif format == "listwise":
            yield next(gen_list(querylist))


train = functools.partial(__reader__, filepath="MQ2007/MQ2007/Fold1/train.txt")
258
test = functools.partial(__reader__, filepath="MQ2007/MQ2007/Fold1/test.txt")
D
dzhwinter 已提交
259

260 261

def fetch():
D
dzhwinter 已提交
262
    return download(URL, "MQ2007", MD5)
263 264


D
dzhwinter 已提交
265 266 267 268 269 270
if __name__ == "__main__":
    fetch()
    for i, (score,
            samples) in enumerate(train(
                format="listwise", shuffle=False)):
        np.savetxt("query_%d" % (i), score, fmt="%.2f")