utils.py 70.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import os
16
import copy
17
import paddle
18
import threading
19
import numpy as np
20 21
import warnings
import logging
22
from functools import reduce
23 24

import paddle.fluid.core as core
25
from paddle.distributed.fleet.meta_optimizers.common import OpRole
26 27 28
from paddle.distributed.auto_parallel.process_group import (
    get_all_process_groups,
)
29
from paddle.fluid.io import is_parameter, is_belong_to_optimizer
30 31 32 33
from paddle.distributed.auto_parallel.dist_attribute import (
    TensorDistributedAttribute,
    OperatorDistributedAttribute,
)
34

35
__not_shape_var_type__ = [
36 37
    core.VarDesc.VarType.READER,
    core.VarDesc.VarType.STEP_SCOPES,
38 39
]

40

41 42 43 44 45 46 47
def get_logger(log_level, name="auto_parallel"):
    logger = logging.getLogger(name)
    logger.propagate = False
    if not logger.handlers:
        logger.setLevel(log_level)
        log_handler = logging.StreamHandler()
        log_format = logging.Formatter(
48 49
            '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
        )
50 51 52 53 54
        log_handler.setFormatter(log_format)
        logger.addHandler(log_handler)
    return logger


55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
def is_valid_list_index(list, index):
    if index >= -len(list) and index < len(list):
        return True
    else:
        return False


def is_dim_shard(mapping):
    if mapping != -1:
        return True
    else:
        return False


def is_dim_replicate(mapping):
    if mapping == -1:
        return True
    else:
        return False


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
def verify_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    if not all(isinstance(d, int) for d in dims_mapping):
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(process_mesh.shape):
            return False
    for i in range(len(process_mesh.shape)):
        if dims_mapping.count(i) > 1:
            return False
    return True


def convert_to_dims_mapping(shard_spec, process_mesh):
    dims_mapping = []
    for shard in shard_spec:
        if shard is None:
            dims_mapping.append(-1)
Z
zhaoyingli 已提交
95 96
        elif process_mesh.topology[process_mesh.dim_names.index(shard)] == 1:
            dims_mapping.append(-1)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        else:
            dims_mapping.append(process_mesh.dim_names.index(shard))
    return dims_mapping


def convert_to_shard_spec(dims_mapping, process_mesh):
    shard_spec = []
    for dim_mapping in dims_mapping:
        if dim_mapping == -1:
            shard_spec.append(None)
        else:
            shard_spec.append(process_mesh.dim_names[dim_mapping])
    return shard_spec


def verify_shard_spec(shard_spec, tensor_shape, process_mesh):
    if len(shard_spec) != len(tensor_shape):
        return False
    for shard in shard_spec:
        if shard is not None and not isinstance(shard, str):
            return False
        if shard is not None and shard not in process_mesh.dim_names:
            return False
    dims_mapping = convert_to_dims_mapping(shard_spec, process_mesh)
    if not verify_dims_mapping(dims_mapping, process_mesh):
        return False
    for i in range(len(tensor_shape)):
124 125 126 127 128
        if (
            dims_mapping[i] != -1
            and tensor_shape[i] > 0
            and tensor_shape[i] % process_mesh.shape[dims_mapping[i]] != 0
        ):
129 130 131 132
            return False
    return True


133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
def compute_compatible_dim_mapping(dim_mappings):
    if not dim_mappings:
        return None
    compatible_mapping = dim_mappings[0]
    for mapping in dim_mappings:
        if compatible_mapping == -1:
            compatible_mapping = mapping
        elif mapping == -1:
            continue
        elif compatible_mapping == mapping:
            continue
        else:
            return None
    return compatible_mapping


def compute_compatible_dims_mapping(dims_mapping_list):
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
154 155 156 157 158 159
        assert (
            dims_mapping is not None
        ), "Dims mapping must not be None for compatible computation"
        assert (
            len(dims_mapping) == length
        ), "The length of dims_mapping in list must be same for compatible computation."
160 161 162
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
163 164
            list(dim_mappings)
        )
165 166 167 168 169 170 171 172 173 174 175 176
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


def compute_compatible_process_mesh(process_mesh_list):
    compatible_process_mesh = None
    if not process_mesh_list:
        return compatible_process_mesh
    for process_mesh in process_mesh_list:
        if process_mesh is not None:
177 178 179 180
            if (
                compatible_process_mesh is None
                or compatible_process_mesh == process_mesh
            ):
181 182
                compatible_process_mesh = process_mesh
            else:
183
                return None
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    return compatible_process_mesh


def compute_compatible_and_update_dim_mapping(dims_mapping_list, index_list):
    assert len(dims_mapping_list) == len(index_list)
    changed = False
    dim_mappings = []
    for i in range(len(dims_mapping_list)):
        assert is_valid_list_index(dims_mapping_list[i], index_list[i])
        dim_mappings.append(dims_mapping_list[i][index_list[i]])
    compatible_dim_mapping = compute_compatible_dim_mapping(dim_mappings)
    if compatible_dim_mapping is None:
        return False
    for i in range(len(dims_mapping_list)):
        if compatible_dim_mapping != dims_mapping_list[i][index_list[i]]:
            dims_mapping_list[i][index_list[i]] = compatible_dim_mapping
            changed = True
    return changed


def append_distributed_attr_suffix(name):
    """
    Append auto parallel suffix for distributed attribute name.
    """
    return name + core.kAutoParallelSuffix()


def remove_distributed_attr_suffix(name):
    """
    Remove auto parallel suffix from distributed attribute name.
    """
    return name.strip(core.kAutoParallelSuffix())


def check_distributed_attr_for_program(program, dist_context=None):
219
    from .dist_context import get_default_distributed_context
220

221 222
    if dist_context is None:
        dist_context = get_default_distributed_context()
223 224 225
    assert (
        dist_context.is_initialized_for_program()
    ), "Distributed attributes must be initialized before check."
226 227
    for block in program.blocks:
        for tensor in block.vars.values():
228 229
            dist_tensor = dist_context.get_dist_tensor_for_graph(tensor)
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
230 231
                tensor
            )
232
            if (tensor_dist_attr is not None) and (not dist_tensor.is_valid()):
233 234
                return False
        for op in block.ops:
235 236 237
            dist_op = dist_context.get_dist_op_for_graph(tensor)
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
            if (op_dist_attr is not None) and (not dist_op.is_valid()):
238 239 240 241
                return False
    return True


242
def print_program_with_dist_attr(program, dist_context=None):
243 244 245 246 247 248
    """
    This function reuses the original program output ability with a distributed context.
    Using lock can avoid multiple threads change the default distributed context simultaneously.
    """
    lock = threading.Lock()
    lock.acquire()
249 250
    from .dist_context import get_default_distributed_context
    from .dist_context import set_default_distributed_context
251

252 253
    if dist_context is None:
        dist_context = get_default_distributed_context()
254
        print(program, flush=True)
255 256 257
    else:
        original_default_context = get_default_distributed_context()
        set_default_distributed_context(dist_context)
258
        print(program, flush=True)
259 260
        set_default_distributed_context(original_default_context)
    lock.release()
261 262 263 264


def _get_comm_group(processes, shape, axis, rank):
    """
265
    Given a rank and the processes mesh the rank belongs to,
266 267 268 269 270 271 272 273 274 275 276
    compute the communication peers of the rank based on the give axis in the mesh.

    Example: 16 processes managed in a 4-Dimensinal mesh with shape of [2, 2, 2, 2].
    the rank communication peers of rank 0 (included) are following:
    in axis 0: [0, 1]
    in axis 1: [0, 2]
    in axis 2: [0, 4]
    in axis 3: [0, 8]
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
277 278
    # tricks to support processes mesh when it is not start with 0 or continuous
    assert rank in processes, "rank [{}] is NOT in processes group {}".format(
279 280
        rank, processes
    )
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    coordinates_in_group = [coordinate[:] for i in range(shape[axis])]

    # select comm group
    for i in range(shape[axis]):
        coordinates_in_group[i][axis] = i

    ranks_in_group_relative = [
        _coordinate2linear_idx(shape, coordinate)
        for coordinate in coordinates_in_group
    ]
    ranks_in_group = [processes[idx] for idx in ranks_in_group_relative]

    return sorted(ranks_in_group)


298 299
def _get_idx_in_axis(processes, shape, axis, rank):
    """
300
    Given a rank and the processes mesh the rank belongs to,
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    compute the index of the rank in given axis.

    Example: 27 processes managed in a 3-Dimensinal mesh with shape of [3, 3, 3].
    the index of rank 22 are:
    in axis 0: 1
    in axis 1: 1
    in axis 2: 2
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
    #  tricks to support processes mesh when it is not start with 0 or continuous
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    return coordinate[axis]


317 318 319 320
def _coordinate2linear_idx(mesh_shape, coordinate):
    """
    convert a coordinate in multidimensional mesh space into a scala idx in linear space.

321
    it use Row-major order for dimension conversion.
322
    so it has:  [most_significant_dim, ..., least_significant_dim]
323
    assume:
324 325 326 327

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

328
    linear_idx of a n dimensional coordinate is:
329 330

        I[n-1] * (S[n-2] * S[n-3] * S[n-4] *     ....    S[0]) +
331 332
        I[n-2] * (         S[n-3] * S[n-4] *     ....    S[0]) +
        I[n-3] * (                  S[n-4] *     ....    S[0]) +
333
        ...
334
        I[1]   * (                                       S[0]) +
335 336 337 338
        I[0]

    """
    # NOTE the following function work based on a strong an assumption
339
    # that the processes in mesh are
340
    #    1. starts from 0
341 342
    #    2. continuous
    # it will be wrong if ths above condition doesnot meet,
343
    # e.g. process_mesh = { process_groups = [7, 8, 9,10, 12, 13, 14, 15], mesh = [2, 4]}
344
    # if you want a more general mapping, you should use cartesian product
345 346 347 348

    assert len(mesh_shape) == len(
        coordinate
    ), "coordinate should have the same size as mesh shape, but got shape: {}, coordinate: {}".format(
349 350
        mesh_shape, coordinate
    )
351
    for i in range(len(mesh_shape)):
352 353 354 355 356 357 358 359 360 361
        assert (
            coordinate[i] >= 0
        ), "index in dimension [{}] is least than zero. coordinate: {}".format(
            i, coordinate
        )
        assert (
            coordinate[i] < mesh_shape[i]
        ), "index beyond extent in dimension [{}]. shape: {}, coordinate: {}".format(
            i, mesh_shape, coordinate
        )
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

    base = mesh_shape[-1]
    linear_idx = coordinate[-1]

    # row major order
    for i in range(len(mesh_shape) - 2, -1, -1):
        linear_idx += base * coordinate[i]
        base *= mesh_shape[i]

    return linear_idx


def _linear_idx2coordinate(mesh_shape, linear_idx):
    """
    mapping a linear scala into multidimensional mesh space, return it coordinate in that space.

    it is the inverse function of _coordinate2linear_idx.
379
    assume:
380 381 382 383 384 385 386 387 388 389 390 391 392 393

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

    the coordinate given linear_idx is:

        I[0] = linear_idx                                  % S[0]
        I[0] = (linear_idx / S[0])                         % S[1]
        I[0] = (linear_idx / (S[0] * S[1]))                % S[2]
        ....

    """

    assert linear_idx >= 0, "linear index [{}] is least than zero".format(
394 395
        linear_idx
    )
396 397 398
    assert linear_idx < np.prod(
        mesh_shape
    ), "linear index beyond the extent of mesh shape. shape: {}, linear index: {}".format(
399 400
        mesh_shape, linear_idx
    )
401 402 403 404 405 406 407 408 409 410 411

    base = 1
    coordinate = [-1] * len(mesh_shape)

    for i in reversed(range(len(mesh_shape))):
        offset = linear_idx / base
        coordinate[i] = int(offset % mesh_shape[i])
        base *= mesh_shape[i]

    # row major order
    return coordinate
412 413


414
def _get_corresponding_rank(dist_context, target_mesh, rank):
415 416 417 418 419 420

    # TODO(JZ-LIANG) a hack method to support varying mesh in Pipeline parallelism case.
    # we assume that all mesh are evenly divide from a parent mesh and should have same size.
    # to revise this in future.

    coordinate = None
421 422
    for mesh in dist_context.process_meshes:
        if rank in mesh.processes and mesh.topology == target_mesh.topology:
423 424 425
            coordinate = _linear_idx2coordinate(
                mesh.topology, mesh.processes.index(rank)
            )
426 427
            break

428 429 430
    # assert coordinate is not None, "could NOT found rank [{}] in any registered mesh".format(
    #     rank)
    if coordinate is not None:
431 432 433
        return target_mesh.processes[
            _coordinate2linear_idx(mesh.topology, coordinate)
        ]
434 435
    else:
        return target_mesh.processes[0]
436 437


438 439
def _get_unshard_dist_shape(var, dist_attr):
    var_shape = var.shape
440 441
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
442 443 444
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
445 446
        var_shape, mapping
    )
447 448 449 450 451 452 453 454 455 456
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            new_shape.append(var_shape[idx] * mesh[mapping[idx]])

    return new_shape


457
def make_data_unshard(dist_main_prog, dist_startup_prog, dist_context=None):
458
    from .dist_context import get_default_distributed_context
459

460 461
    if dist_context is None:
        dist_context = get_default_distributed_context()
462 463 464

    for var in dist_main_prog.list_vars():
        if var.is_data:
465
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
466 467
                var
            )
468 469
            inverse_shape = _get_unshard_dist_shape(var, tensor_dist_attr)
            var.desc.set_shape(inverse_shape)
470
            dim_mapping = tensor_dist_attr.dims_mapping
471
            dim_mapping = [-1] * len(dim_mapping)
472 473
            tensor_dist_attr.dims_mapping = dim_mapping
            dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
474 475


476
def _update_addition_info(addition_info):
477
    """Update default addition_info with inputs"""
478
    add_info = {"epoch": 0, "batch": 0, "batch_size": 0}
479
    if not addition_info:
480
        return add_info
481
    elif not isinstance(addition_info, dict):
482 483 484 485
        raise TypeError(
            "The type of 'addition_info' should be 'dict', "
            "but got '{}'.".format(str(type(addition_info)))
        )
486
    else:
487 488 489 490
        for item, value in addition_info.items():
            if item not in ["epoch", "batch", "batch_size"]:
                raise ValueError(
                    "The key of 'addition_info' should be one of the "
491
                    "['epoch', 'batch', 'batch_size'], but got '{}'.".format(
492 493 494
                        str(item)
                    )
                )
495 496 497
            if not isinstance(value, int):
                raise ValueError(
                    "The value of 'addition_info' should be 'int', "
498 499
                    "but got '{}'.".format(str(type(value)))
                )
500 501
            add_info[item] = value
        return add_info
502 503 504


def _check_valid_path(file_path):
505
    """Validity check of input file path"""
506 507 508
    if not file_path:
        return file_path
    elif isinstance(file_path, list):
509 510
        for file in file_path:
            if not isinstance(file, str):
511 512 513 514
                raise TypeError(
                    "The type of file path should be 'str', "
                    "but got '{}'.".format(str(type(file)))
                )
515
            if not os.path.exists(file):
516
                raise ValueError(
517 518
                    "The file path '{}' does not exist.".format(file)
                )
519 520
        return file_path
    else:
521 522 523 524
        raise TypeError(
            "The type of file path should be 'list', "
            "but got '{}'.".format(str(type(file_path)))
        )
525 526 527 528 529 530


def _check_param_dict(param_dict):
    if not param_dict:
        raise ValueError("'param_dict' cannot be None.")
    elif not isinstance(param_dict, dict):
531 532 533 534
        raise TypeError(
            "The type of 'param_dict' should be 'dict', "
            "but got '{}'.".format(str(type(param_dict)))
        )
535 536 537 538 539
    else:
        for name, value in param_dict.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of key of 'param_dict' should be 'str', "
540 541
                    "but got '{}'.".format(str(type(name)))
                )
542 543 544
            if not isinstance(value, paddle.fluid.LoDTensor):
                raise TypeError(
                    "The type of value of 'param_dict' should be 'LoDTensor', "
545 546
                    "but got '{}'.".format(str(type(value)))
                )
547 548 549 550 551 552 553
        return param_dict


def _check_dist_attr(dist_attr):
    if not dist_attr:
        return dist_attr
    elif not isinstance(dist_attr, dict):
554 555 556 557
        raise TypeError(
            "The type of 'dist_attr' should be 'dict', "
            "but got '{}'.".format(str(type(dist_attr)))
        )
558 559 560 561 562
    else:
        for name, value in dist_attr.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of param name of 'dist_attr' should be 'str', "
563 564
                    "but got '{}'.".format(str(type(name)))
                )
565 566 567
            if not isinstance(value, dict):
                raise TypeError(
                    "The type of distributed attribute should be 'dict', "
568 569
                    "but got '{}'".format(str(type(value)))
                )
570 571 572 573 574
            attr = ['process_shape', 'process_group', 'dims_mapping']
            if list(value.keys()) != attr:
                raise ValueError(
                    "The key of distributed attribute should be "
                    "'['process_shape', 'process_group', 'dims_mapping']', "
575 576
                    "but got {}.".format(str(value.keys()))
                )
577
        return dist_attr
578 579


580 581 582 583 584 585 586 587
def save_distributed_checkpoint(
    program,
    checkpoint_path,
    dist_attr_path,
    addition_info=None,
    is_integrated=False,
    dist_context=None,
):
588 589
    """
    Save model parameter state, optimzer state, distributed attribute and
590 591 592 593 594
    additional information of each rank.

    Args:
        program(Program): The program to be saved.
        checkpoint_path(str): The path of the checkpoint file to be saved.
595 596 597
        dist_attr_path(str): The path of distributed attribute file to be saved.
        addition_info(dict, optional): Additional information, key should be selected in ['epoch', 'batch', 'batch_size'].
            Default values are 0, when 'addition_info' is None. Default: None.
598
        is_integrated(bool, optional): Whether to integrate param before save. Default: False.
599
        dist_context(DistributedContext ,optional): collect related distributed information for program
600 601 602 603 604 605 606

    Returns:
        None

    Examples:
        .. code-block:: python

607 608 609 610
            path = os.path.join("./output", "step_%d" % step)
            os.makedirs(path, exist_ok=True)
            add_info = {'batch': step, "batch_size": global_batch_size}
            save_distributed_checkpoint(program, path, path, add_info)
611
    """
612 613 614 615 616 617 618 619
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    assert isinstance(is_integrated, bool)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    addition_info = _update_addition_info(addition_info)

620
    if not is_integrated:
621 622
        _save_distributed_state_dict(program, addition_info, checkpoint_path)
        _save_distributed_attribute(program, dist_attr_path, dist_context)
623 624 625
    else:
        # TODO: integrate param before save
        raise NotImplementedError(
626 627
            "Integrating parameter has not been implemented."
        )
628 629


630
def load_distributed_checkpoint(checkpoint_path, dist_attr_path):
631
    """
632
    Load parameter, optimizer, distributed attribute and addition_info.
633 634

    Args:
635 636
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
637 638

    Returns:
639 640
        param_dict(dict): parameters' value of all ranks.
        dist_attr(dict): parameters' distributed attribute.
641
        addition_info(dict): additional information user saved in last training.
642 643 644 645 646 647 648

    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.

    Examples:
        .. code-block:: python

649
            ckpt_path = ['./model_state_rank0.pdmodel',
650
                         './model_state_rank1.pdmodel']
651
            dist_attr_path = ['./dist_attr_rank0.pdattr',
652 653 654
                              './dist_attr_rank1.pdattr']
            param_dict, dist_attr, add_info = load_distributed_checkpoint(ckpt_path, dist_attr_path)
    """
655 656 657 658
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
659 660 661 662 663 664 665 666

    state_dict_info = _load_distributed_state_dict(checkpoint_path)
    dist_attr = _load_distributed_attribute(dist_attr_path)
    param_dict = state_dict_info["model"]
    addition_info = state_dict_info["addition_info"]
    return param_dict, dist_attr, addition_info


667 668 669
def load_checkpoint_into_program(
    checkpoint_path, dist_attr_path, program, dist_context=None
):
670
    """
671 672 673 674 675 676 677 678 679 680
    Load parameter, optimizer, distributed attribute and addition_info into model.

    Args:
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
        program(Program): the program to be updated with checkpoint_path.
        dist_context(DistributedContext ,optional): collect related distributed information for program

    Returns:
        addition_info(dict): user saved in last train.
681

682 683
    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.
684 685 686 687 688

    Examples:
        .. code-block:: python

            exe.run(startup_program)
689
            ckpt_path = ['./model_state_rank0.pdmodel',
690
                         './model_state_rank1.pdmodel']
691
            dist_attr_path = ['./dist_attr_rank0.pdattr',
692 693
                              './dist_attr_rank1.pdattr']
            load_checkpoint_into_program(ckpt_path, dist_attr_path, main_program)
694
    """
695
    from .dist_context import get_default_distributed_context
696

697
    assert isinstance(program, paddle.fluid.framework.Program)
698 699 700 701
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
702 703 704 705 706 707 708
    if dist_context is None:
        dist_context = get_default_distributed_context()
    all_state_dict_info = _load_distributed_state_dict(checkpoint_path)
    all_pre_dist_attr = _load_distributed_attribute(dist_attr_path)
    all_cur_dist_attr = get_dist_attr(program, dist_context)
    all_param_dict = all_state_dict_info["model"]
    addition_info = all_state_dict_info["addition_info"]
709 710 711
    sliced_param_dict = merge_and_slice_parameter(
        all_param_dict, all_pre_dist_attr, all_cur_dist_attr
    )
712 713 714 715 716 717
    load_parameter_into_program(sliced_param_dict, program)

    return addition_info


def load_parameter_into_program(param_dict, program):
718
    """
719 720 721 722 723 724
    Load parameters into program.

    Args:
        param_dict(dict): parameters' name and value.
        program(Program): the program to be updated
    """
725
    assert isinstance(param_dict, dict)
726
    assert program and isinstance(program, paddle.fluid.framework.Program)
727 728
    if not param_dict:
        return
729 730 731 732
    program.set_state_dict(param_dict)


def _save_distributed_attribute(program, dist_attr_path, dist_context):
733
    """Save distributed attribute of all parameters"""
734 735
    # TODO: just save a complete distributed attribute file
    rank_id = paddle.distributed.get_rank()
736 737 738
    dist_attr_name = os.path.join(
        dist_attr_path, "dist_attr_rank{}.pdattr".format(rank_id)
    )
739 740
    dist_attr_dict = {
        "model": get_dist_attr(program, dist_context),
741
        "world_size": paddle.distributed.get_world_size(),
742 743
    }
    paddle.save(dist_attr_dict, dist_attr_name)
744
    logging.info(
745 746
        "Already saved distributed attribute to '{}'.".format(dist_attr_path)
    )
747 748 749


def _load_distributed_attribute(dist_attr_path):
750
    """Load parameters' distributed attribute from dist_attr_path"""
751 752 753 754
    total_dist_attr = {}
    for dist_attr_file in dist_attr_path:
        dist_attr = paddle.load(dist_attr_file)
        pre_world_size = dist_attr["world_size"]
755 756 757
        assert pre_world_size == len(
            dist_attr_path
        ), "The number of 'dist_attr_path' must be equal to the last training world size."
758 759 760 761 762 763 764 765
        for name, attr in dist_attr["model"].items():
            if name not in total_dist_attr:
                total_dist_attr[name] = attr

    return total_dist_attr


def _save_distributed_state_dict(program, addition_info, checkpoint_path):
766
    """Save parameters' state_dict"""
767
    rank = paddle.distributed.get_rank()
768 769 770
    ckpt_file_name = os.path.join(
        checkpoint_path, "model_state_rank{}.pdmodel".format(rank)
    )
771 772 773
    state_dict = {
        "model": program.state_dict(),
        "world_size": paddle.distributed.get_world_size(),
774
        "addition_info": addition_info,
775 776 777 778 779 780
    }
    paddle.save(state_dict, ckpt_file_name)
    logging.info("Already saved model to '{}'.".format(checkpoint_path))


def _load_distributed_state_dict(checkpoint_path):
781
    """Load parameters' state_dict from checkpoint_path"""
782 783
    all_state_dict = {}
    for idx, ckpt_file in enumerate(checkpoint_path):
Z
zhaoyingli 已提交
784
        state_dict_info = paddle.load(ckpt_file, return_numpy=True)
785
        pre_world_size = state_dict_info["world_size"]
786 787 788
        assert pre_world_size == len(
            checkpoint_path
        ), "The number of 'checkpoint_path' must be equal to the last training world size."
789 790 791 792 793 794 795 796 797 798
        if idx == 0:
            addition_info = state_dict_info["addition_info"]
        for name, value in state_dict_info["model"].items():
            if name in all_state_dict:
                all_state_dict[name].append(np.array(value))
            else:
                all_state_dict[name] = [np.array(value)]

    all_state_dict_info = {
        "model": all_state_dict,
799
        "addition_info": addition_info,
800 801 802 803 804
    }
    return all_state_dict_info


def get_dist_attr(program, dist_context=None):
805
    """
806 807 808 809 810 811 812 813 814 815 816 817 818 819
    Get distributed attribute of current rank.

    Args:
        program(Program): main program for training
    """
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    dist_attr = {}
    for var in program.list_vars():
        if is_parameter(var) or is_belong_to_optimizer(var):
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
820 821
                var
            )
822 823 824 825 826
            process_mesh = tensor_dist_attr.process_mesh
            dims_mapping = tensor_dist_attr.dims_mapping
            dist_attr[var.name] = {
                "process_shape": process_mesh.topology,
                "process_group": process_mesh.processes,
827
                "dims_mapping": dims_mapping,
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
            }
    return dist_attr


def merge_and_slice_parameter(dist_param_dict, pre_dist_attr, cur_dist_attr):
    """
    Merge parameters with previous dist_attr and slice parameters with current dist_attr

    Arags:
        dist_param_dict(dict): parameters' value of all ranks.
        pre_dist_attr(dict): parameters' dist_attr of last training process.
        cur_dist_attr(dict): parameters' dist_attr of current training process.

    Returns:
        dist_param_dict(dict): parameters' value of current rank.
    """
    assert _check_dist_attr(pre_dist_attr), "'pre_dist_attr' cannot be None."
845 846 847 848 849
    assert isinstance(
        dist_param_dict, dict
    ), "The type of 'dist_param_dict' should be 'dict', but got {}.".format(
        str(type(dist_param_dict))
    )
850 851
    for name, value in dist_param_dict.items():
        if not isinstance(name, str):
852 853 854 855 856 857
            raise TypeError(
                "The key of 'dist_param_dict' is parameter's name, "
                "and its type should be 'str', but got {}.".format(
                    str(type(name))
                )
            )
858
        if not isinstance(value, list) or not all(
859 860
            isinstance(v, np.ndarray) for v in value
        ):
861 862
            raise TypeError(
                "The value of 'dist_param_dict' is parameter's value of all ranks, "
863 864
                "and its type should be 'list(numpy.ndarray)'."
            )
865

866 867 868
    if cur_dist_attr is None:
        return {}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
    param_not_in_pre = []
    param_not_in_cur = []
    logging.info("Start to merge and slice parameters.")
    for var_name in cur_dist_attr.keys():
        if var_name not in pre_dist_attr:
            param_not_in_pre.append(var_name)
            continue

        pre_attr = pre_dist_attr[var_name]
        cur_attr = cur_dist_attr[var_name]
        if pre_attr == cur_attr:
            # skip merge and slice
            rank_id = paddle.distributed.get_rank()
            index = cur_attr["process_group"].index(rank_id)
            param = dist_param_dict[var_name][index]
884
            dist_param_dict[var_name] = param
885 886 887 888 889 890
            continue

        pre_param = dist_param_dict[var_name]
        pre_dims_mapping = pre_attr["dims_mapping"]
        cur_dims_mapping = cur_attr["dims_mapping"]
        if len(set(pre_dims_mapping)) > 1 or -1 not in pre_dims_mapping:
891
            complete_param = _merge_parameter_with_dist_attr(
892 893
                pre_param, pre_attr
            )
894 895 896
            dist_param_dict[var_name] = complete_param
        else:
            complete_param = pre_param[0]
897
            dist_param_dict[var_name] = complete_param
898 899

        if len(set(cur_dims_mapping)) > 1 or -1 not in cur_dims_mapping:
900
            sliced_param = _slice_parameter_with_dist_attr(
901 902
                complete_param, cur_attr
            )
903 904 905 906 907 908 909 910
            dist_param_dict[var_name] = sliced_param

    for var_name in pre_dist_attr:
        if var_name not in cur_dist_attr:
            param_not_in_cur.append(var_name)
            dist_param_dict.pop(var_name)

    if param_not_in_pre:
911 912
        warnings.warn(
            "Parameters '{}' are not found in last training process.".format(
913 914 915
                str(param_not_in_pre)
            )
        )
916 917
    if param_not_in_cur:
        warnings.warn(
918
            "Parameters '{}' are not found in current training process.".format(
919 920 921
                str(param_not_in_cur)
            )
        )
922 923 924 925 926

    return dist_param_dict


def _merge_parameter_with_dist_attr(param_list, dist_attr):
927
    """Merge parameter with distributed attribute"""
928
    from .reshard import Resharder
929 930 931 932 933

    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # get the complete shape of the parameter
934 935 936
    complete_shape = Resharder.compute_complete_shape(
        param_list[0].shape, process_shape, dims_mapping
    )
937 938
    # merge the parameter with dist_attr
    partition_param_list = []
Z
zhaoyingli 已提交
939
    merged_partiton = []
940
    for process in process_group:
941
        partition_index = Resharder.compute_partition_index(
942 943
            process, complete_shape, dims_mapping, process_shape, process_group
        )
944
        index = process_group.index(process)
Z
zhaoyingli 已提交
945 946
        if partition_index not in merged_partiton:
            merged_partiton.append(partition_index)
947 948 949 950 951 952
            _merge_parameter(
                partition_param_list,
                param_list[index],
                partition_index,
                complete_shape,
            )
Z
zhaoyingli 已提交
953

954 955 956
    assert (
        len(partition_param_list) == 1 or not partition_param_list
    ), "Fail to merge parameter"
957
    complete_param = partition_param_list[0][0]
958 959 960 961
    return complete_param


def _slice_parameter_with_dist_attr(param, dist_attr):
962 963 964 965
    """Slice parameter with distributed attribute"""
    param = (
        np.array(param) if isinstance(param, paddle.fluid.LoDTensor) else param
    )
966 967 968 969
    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # slice the parameter with dist_attr
970 971 972 973 974 975
    partition_index_list = _get_split_indices(
        param.shape, dims_mapping, process_shape, process_group
    )
    sliced_param_list = _slice_parameter(
        param, partition_index_list, len(partition_index_list)
    )
976 977
    # get the current parameter's index in sliced_param_list
    rank_id = paddle.distributed.get_rank()
978 979 980
    sliced_param_index = _get_sliced_param_index(
        rank_id, param.shape, dims_mapping, process_shape, process_group
    )
981
    sliced_param = sliced_param_list[sliced_param_index]
982 983 984
    return sliced_param


985 986 987
def _merge_parameter(
    partition_param_list, param, partition_index, complete_shape
):
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    """
    Merge partitial parameters to a complete one.

    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
            partition_param_list = [(np.array([[[1.11, 1.12]]]), [[0,1],[0,1],[0,2]])]
            param = np.array([[[1.13, 1.14]]])
            partition_index = [[0,1],[0,1],[2,4]]

            _merge_parameter(partition_param_list, param, partition_index)
            # partition_param_list: [(np.array([[[1.11, 1.12, 1.13, 1.14]]]), [[0,1],[0,1],[0,4]])]
    """
1005
    from .reshard import Resharder
1006

Z
zhaoyingli 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015
    if len(partition_param_list) == 1:
        is_complete_data = True
        for idx, item in enumerate(partition_param_list[0][1]):
            if item[0] != 0 or item[1] != complete_shape[idx]:
                is_complete_data = False
                break
        if is_complete_data:
            return

1016 1017
    if not partition_param_list:
        partition_param_list.append((param, partition_index))
1018
    else:
1019 1020
        i = 0
        while i < len(partition_param_list):
1021 1022 1023 1024 1025 1026 1027
            (
                concat_axis,
                first_order,
                new_partition,
            ) = Resharder.compute_concat_info(
                partition_param_list[i][1], partition_index
            )
1028 1029 1030
            if concat_axis != -1:
                if first_order == 0:
                    new_param = np.concatenate(
1031 1032
                        (partition_param_list[i][0], param), axis=concat_axis
                    )
1033 1034
                else:
                    new_param = np.concatenate(
1035 1036
                        (param, partition_param_list[i][0]), axis=concat_axis
                    )
1037 1038

                partition_param_list.pop(i)
1039 1040 1041 1042 1043 1044
                _merge_parameter(
                    partition_param_list,
                    new_param,
                    new_partition,
                    complete_shape,
                )
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
                break
            i += 1


def _slice_parameter(complete_param, partition_index_list, length):
    """
    Slice a complete parameter.

    Returns:
        sliced_param_list(list): sliced parameters with 'partition_index_list'

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            sliced_param_list = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]
    """
    sliced_param_list = []
    axis = len(complete_param.shape) - length
1072 1073 1074
    sliced_param = np.split(
        complete_param, partition_index_list[axis], axis=axis
    )
1075 1076 1077 1078
    if length == 1:
        return sliced_param
    for param in sliced_param:
        sliced_param_list.extend(
1079 1080
            _slice_parameter(param, partition_index_list, length - 1)
        )
1081 1082 1083
    return sliced_param_list


1084 1085 1086
def _get_sliced_param_index(
    rank, complete_shape, dims_mapping, process_shape, process_group
):
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    """
    Get sliced_param's index of current rank in all sliced parameters list.

    Returns:
        sliced_param_index(int): the index of sliced param in sliced_param_list

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            slice_param = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
1105
            # slice_param:
1106 1107 1108 1109 1110 1111
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]

            index = _get_sliced_param_index(rank, complete_shape, dims_mapping
                                            process_shape, process_group)
            # index: 2
    """
1112
    from .reshard import Resharder
1113

1114 1115 1116
    partition_index = Resharder.compute_partition_index(
        rank, complete_shape, dims_mapping, process_shape, process_group
    )
1117 1118 1119 1120 1121 1122
    sliced_param_index = 0
    for i, shape in enumerate(complete_shape):
        if dims_mapping[i] == -1:
            slice_shape = shape
        else:
            slice_shape = shape // process_shape[dims_mapping[i]]
1123 1124
        if slice_shape == 1:
            index = partition_index[i][0]
1125 1126 1127 1128
        else:
            index = (partition_index[i][0] + 1) // slice_shape
        sliced_param_index = sliced_param_index * (shape // slice_shape) + index
    return sliced_param_index
1129 1130


1131 1132 1133
def _get_split_indices(
    complete_shape, dims_mapping, process_shape, process_group
):
1134 1135 1136 1137 1138
    """
    Get split indices of every dimension.

    Returns:
        split_indices_list(list): the split indices of every dimension of the parameter
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            index = _get_split_indices(complete_shape, dims_mapping, process_shape, process_group)
            # index: [[], [], [2, 4]]
    """
1153
    from .reshard import Resharder
1154 1155 1156

    split_indices_list = []
    for process in process_group:
1157
        partition_index = Resharder.compute_partition_index(
1158 1159
            process, complete_shape, dims_mapping, process_shape, process_group
        )
1160 1161 1162 1163 1164 1165
        if split_indices_list:
            for dim in range(len(partition_index)):
                split_indices_list[dim].extend(partition_index[dim])
        else:
            split_indices_list = partition_index
    split_indices_list = list(
1166 1167 1168 1169 1170 1171
        map(
            lambda x, y: list(set(x) - set([y]) - set([0])),
            split_indices_list,
            complete_shape,
        )
    )
1172 1173
    split_indices_list = [sorted(x) for x in split_indices_list]
    return split_indices_list
Z
zhaoyingli 已提交
1174 1175 1176 1177 1178 1179 1180 1181


def set_grad_var_shape(program, dist_context):
    from .operators.common import infer_shape
    from paddle.distributed.fleet.meta_optimizers.common import OpRole

    block = program.global_block()
    vars = block.vars
1182 1183 1184 1185 1186 1187 1188 1189
    appended_grad_times = 0
    grad_var_to_var = dist_context.dist_op_context.grad_var_to_var

    for idx, op in enumerate(block.ops):

        if int(op.attr('op_role')) != int(OpRole.Backward):
            continue

1190 1191 1192 1193
        if (
            int(block.ops[idx - 1].attr('op_role')) == int(OpRole.Forward)
            or int(block.ops[idx - 1].attr('op_role')) == 257
        ):
1194
            appended_grad_times += 1
J
JZ-LIANG 已提交
1195 1196 1197 1198

        if op.type in ["check_finite_and_unscale", "update_loss_scaling"]:
            break

1199
        if op.type in ["sum", "concat", "shape"]:
Z
zhaoyingli 已提交
1200 1201
            continue

1202 1203 1204 1205 1206 1207 1208 1209 1210
        op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None

        for var_name in op.output_arg_names:

            if "@GRAD" not in var_name:
                continue
            if var_name in grad_var_to_var[appended_grad_times]:
                forward_var_name = grad_var_to_var[appended_grad_times][
1211 1212
                    var_name
                ]
1213
            else:
1214
                forward_var_name = var_name[: var_name.find("@GRAD")]
1215 1216

            if op.type in [
1217 1218 1219 1220 1221
                "c_allreduce_sum",
                "c_identity",
                "scale",
                "cast",
                "fill_any_like",
1222 1223
            ]:
                forward_var_name = op.input_arg_names[0]
1224 1225 1226 1227 1228
            elif (
                op.type == "matmul_v2_grad"
                or op.type == "matmul_grad"
                or op.type == "mul_grad"
            ):
1229 1230 1231 1232
                forward_var_name = None
                for output_name in op.output_names:
                    if var_name in op.output(output_name):
                        assert "@GRAD" in output_name
1233
                        input_name = output_name[: output_name.find("@GRAD")]
1234 1235 1236 1237 1238
                        assert len(op.input(input_name)) == 1
                        forward_var_name = op.input(input_name)[0]
                assert forward_var_name is not None

            need_set_shape_list = [
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
                "reshape2_grad",
                "softmax_with_cross_entropy_grad",
                "transpose2_grad",
                "softmax_grad",
                "cross_entropy_grad2",
                "dropout_grad",
                "tanh_grad",
                "slice",
                "assign",
                "matmul_v2_triple_grad",
                "elementwise_add_triple_grad",
                "fill_constant",
                "sqrt_grad",
Z
zhaoyingli 已提交
1252
                "fused_softmax_mask_upper_triangle_grad",
1253 1254
                "flatten_contiguous_range_grad",
                "relu_grad",
1255 1256
            ]
            forward_list = [
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
                "reshape2",
                "softmax_with_cross_entropy",
                "transpose2",
                "softmax",
                "cross_entropy2",
                "dropout",
                "tanh",
                ["slice_grad", "c_allgather"],
                "assign",
                "matmul_v2_grad_grad",
                "elementwise_add_grad_grad",
                "shape",
                "sqrt",
                "fused_softmax_mask_upper_triangle",
                "flatten_contiguous_range",
                "relu",
1273 1274 1275 1276 1277
            ]
            if op.type in need_set_shape_list:
                for forward_op in block.ops:
                    idx = need_set_shape_list.index(op.type)
                    forward_op_name = forward_list[idx]
1278 1279 1280 1281 1282 1283 1284 1285 1286
                    if (
                        forward_op.type in forward_op_name
                        and forward_var_name in forward_op.input_arg_names
                    ):
                        op_dist_attr = (
                            dist_context.get_op_dist_attr_for_program(
                                forward_op
                            )
                        )
1287 1288 1289
                        break

            forward_input_dist_attr = op_dist_attr.get_input_dist_attr(
1290 1291 1292 1293 1294
                forward_var_name
            )
            assert (
                forward_input_dist_attr is not None
            ), f"{forward_var_name, str(op)}"
1295
            forward_var = vars[forward_var_name]
1296 1297 1298
            forward_var_dist_attr = (
                dist_context.get_tensor_dist_attr_for_program(forward_var)
            )
1299 1300
            assert forward_var_dist_attr is not None
            grad_var = vars[var_name]
1301 1302 1303 1304 1305 1306
            ref_shape = infer_shape(
                block,
                forward_var,
                forward_var_dist_attr,
                forward_input_dist_attr,
            )
1307 1308 1309

            if list(grad_var.shape) != ref_shape:
                grad_var.desc.set_shape(ref_shape)
C
caozhou 已提交
1310 1311


1312 1313 1314 1315 1316 1317
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
OpRole = core.op_proto_and_checker_maker.OpRole


def is_forward_op(op):
    op_role = int(op.attr('op_role'))
1318 1319 1320
    return OP_ROLE_KEY in op.attr_names and (
        op_role == int(OpRole.Forward) or op_role == int(OpRole.Loss)
    )
1321 1322 1323


def is_backward_op(op):
1324 1325 1326
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Backward)
1327 1328


1329
def is_optimize_op(op):
1330 1331 1332
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize)
1333 1334


1335
def is_lr_sched_op(op):
1336 1337 1338
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize.LRSched)
1339 1340


J
JZ-LIANG 已提交
1341
def is_loss_op(op):
1342 1343 1344
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) == (int(OpRole.Forward) | int(OpRole.Loss))
J
JZ-LIANG 已提交
1345 1346


1347 1348 1349 1350 1351 1352 1353
def is_loss_grad_op(op):
    if OP_ROLE_KEY not in op.attr_names:
        return False
    op_role = int(op.all_attrs()[OP_ROLE_KEY])
    return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)


1354
def is_gradient_clip_op(op):
1355 1356 1357
    return op.desc.has_attr("op_namescope") and op.desc.attr(
        "op_namescope"
    ).startswith("/gradient_clip")
1358 1359


1360 1361 1362 1363
def is_prim_op(op):
    return op.type.endswith("_p")


J
JZ-LIANG 已提交
1364 1365 1366 1367
def get_loss_op(block):
    loss_ops = []
    for op in block.ops:
        if is_loss_op(op):
1368 1369 1370
            assert (
                len(op.desc.output_arg_names()) == 1
            ), "loss op should only output loss var"
J
JZ-LIANG 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
            loss_ops.append(op)

    assert len(loss_ops) == 1, "num of loss op is not equal to one"
    return loss_ops[0]


def set_var_dist_attr(dist_context, var, dims_mapping, process_mesh, **kwargs):
    tensor_dist_attr = TensorDistributedAttribute()
    tensor_dist_attr.dims_mapping = dims_mapping
    # TODO get global mesh group
    tensor_dist_attr.process_mesh = process_mesh
1382 1383 1384
    if "mark_annotated" in kwargs and kwargs["mark_annotated"]:
        tensor_dist_attr.mark_annotated("dims_mapping")
        tensor_dist_attr.mark_annotated("process_mesh")
J
JZ-LIANG 已提交
1385 1386 1387 1388
    dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
    return tensor_dist_attr


1389
def naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
1390 1391
    new_op, process_mesh, ref_mapping, ctx
):
J
JZ-LIANG 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
    assert process_mesh is not None
    assert ref_mapping is not None

    new_op_dist_attr = OperatorDistributedAttribute()

    for input_varname in new_op.desc.input_arg_names():
        new_op_dist_attr.set_input_dims_mapping(input_varname, ref_mapping)
    for output_varname in new_op.desc.output_arg_names():
        new_op_dist_attr.set_output_dims_mapping(output_varname, ref_mapping)

    new_op_dist_attr.process_mesh = process_mesh
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


C
caozhou 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
def update_op_dims_mapping_by_default_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    # The following statement will be replaced by a more elegent way
    if op_desc.type() == "shape" or op_desc.type() == "slice":
        return False
    output_names = op_desc.output_names()
    xshape_arg_names = []
    if "XShape" in output_names:
        xshape_arg_names = op_desc.output("XShape")
    batch_dim_mappings = []
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if len(dims_mapping) > 1:
            for idx, mapping in enumerate(dims_mapping[1:]):
1425 1426 1427 1428 1429
                assert (
                    mapping == -1
                ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                    op_desc.type(), idx, mapping
                )
C
caozhou 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438
        batch_dim_mappings.append(dims_mapping[0])
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if len(dims_mapping) > 1:
                for idx, mapping in enumerate(dims_mapping[1:]):
1439 1440 1441 1442 1443
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1444 1445
            batch_dim_mappings.append(dims_mapping[0])
        else:
1446 1447 1448 1449 1450
            assert (
                dims_mapping[0] == -1
            ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part.".format(
                op_desc.type(), mapping
            )
C
caozhou 已提交
1451 1452
            if len(dims_mapping) > 2:
                for idx, mapping in enumerate(dims_mapping[2:]):
1453 1454 1455 1456 1457
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1458 1459 1460
            batch_dim_mappings.append(dims_mapping[1])

    compatible_dim_mapping = compute_compatible_dim_mapping(batch_dim_mappings)
1461 1462 1463
    assert (
        compatible_dim_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if compatible_dim_mapping != dims_mapping[0]:
            dims_mapping[0] = compatible_dim_mapping
            changed = True
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if compatible_dim_mapping != dims_mapping[0]:
                dims_mapping[0] = compatible_dim_mapping
                changed = True
        else:
            if compatible_dim_mapping != dims_mapping[1]:
                dims_mapping[1] = compatible_dim_mapping
                changed = True

    return changed


def update_op_dims_mapping_by_elementwise_like_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    input_arg_names = op_desc.input_arg_names()
    input_dims_mapping_dict = {}
    input_dims_mapping_lens = {}
    max_dims_mapping_len = -1
    for arg_name in input_arg_names:
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if max_dims_mapping_len < len(dims_mapping):
            max_dims_mapping_len = len(dims_mapping)
        input_dims_mapping_dict[arg_name] = dims_mapping
        input_dims_mapping_lens[arg_name] = len(dims_mapping)

    dims_mapping_list = []
    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
            for i in range(input_dims_mapping_lens[arg_name]):
1509 1510 1511
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
                new_dims_mapping[new_idx] = input_dims_mapping_dict[arg_name][i]
            dims_mapping_list.append(new_dims_mapping)
        else:
            dims_mapping_list.append(input_dims_mapping_dict[arg_name])
    output_arg_names = op_desc.output_arg_names()
    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        assert len(dims_mapping) == max_dims_mapping_len
        dims_mapping_list.append(dims_mapping)

    compatible_dims_mapping = compute_compatible_dims_mapping(dims_mapping_list)
1523 1524 1525
    assert (
        compatible_dims_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1526 1527 1528 1529 1530 1531 1532

    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [
                -1 for _ in range(input_dims_mapping_lens[arg_name])
            ]
            for i in range(input_dims_mapping_lens[arg_name]):
1533 1534 1535
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1536 1537 1538 1539 1540 1541
                new_dims_mapping[i] = compatible_dims_mapping[new_idx]
            if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                changed = True
        else:
            if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
1542 1543 1544
                op_dist_attr.set_input_dims_mapping(
                    arg_name, compatible_dims_mapping
                )
C
caozhou 已提交
1545 1546 1547 1548 1549
                changed = True

    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if compatible_dims_mapping != dims_mapping:
1550 1551 1552
            op_dist_attr.set_output_dims_mapping(
                arg_name, compatible_dims_mapping
            )
C
caozhou 已提交
1553 1554 1555
            changed = True

    return changed
1556 1557


1558 1559 1560
def get_all_distributed_main_program(
    serial_program_info, dist_context, parallelizer
):
1561
    "Get all distributed main programs by dist_context."
1562
    from .dist_context import DistributedOperatorContext
1563

1564
    cluster = serial_program_info.cluster
1565
    copied_parallelizer = copy.deepcopy(parallelizer)
1566
    all_dist_main_program = []
1567 1568 1569 1570 1571
    ranks = (
        paddle.distributed.get_world_size()
        if cluster is None
        else len(cluster.get_all_devices("GPU"))
    )
1572 1573 1574
    for rank_id in range(ranks):
        used_dist_context = copy.deepcopy(dist_context)
        used_dist_context._dist_op_context = DistributedOperatorContext()
1575 1576 1577 1578 1579 1580 1581
        (
            _,
            _,
            dist_startup_program,
            dist_main_program,
            _,
        ) = copied_parallelizer._get_dist_program(rank_id, used_dist_context)
1582 1583 1584 1585 1586 1587
        all_dist_main_program.append(dist_main_program)

    return all_dist_main_program


class SerialProgramInfo:
1588 1589 1590
    def __init__(
        self, train_program, satrtup_program, loss, optimizer, cluster=None
    ):
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
        self._train_program = train_program
        self._startup_program = satrtup_program
        self._loss = loss
        self._optimizer = optimizer
        self._cluster = cluster

    @property
    def train_program(self):
        return self._train_program

    @property
    def startup_program(self):
        return self._startup_program

    @property
    def loss(self):
        return self._loss

    @property
    def optimizer(self):
        return self._optimizer

    @property
    def cluster(self):
        return self._cluster
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630


def get_standalone_cost_data(distributed_programs):
    def _compute_runtime(op_cost, op, vars):
        runtime = 0
        try:
            runtime = float(op_cost["op_time"])
        except:
            return runtime
        op_config = op_cost["config"]
        total_static_input_size = 0
        total_actual_input_size = 0
        parsed_info = op_config.split("\n")
        variable = "(Variable)"
        for info in parsed_info:
1631 1632 1633
            variable = (
                "(Variable)" if "(Variable)" in info else "(list<Variable>"
            )
1634
            if variable in info:
1635
                arg_name_lower = info[: info.find(variable) - 1]
1636 1637
                shape_left_boundary = info.find("[")
                shape_right_boundary = info.find("]")
1638 1639 1640 1641 1642 1643 1644 1645
                assert (
                    shape_left_boundary > 0
                    and shape_right_boundary > 0
                    and shape_right_boundary > shape_left_boundary
                ), "Get shape failed."
                shape = info[
                    shape_left_boundary + 1 : shape_right_boundary
                ].split(",")
1646 1647 1648 1649
                shape = list(map(lambda x: int(x.strip()), shape))
                dtype_factor = 1
                total_static_input_size += reduce(lambda x, y: x * y, shape)
                if op.type == "c_embedding":
1650 1651 1652
                    arg_name_lower = (
                        "w" if arg_name_lower == "weight" else "ids"
                    )
1653 1654 1655 1656 1657
                for arg_name in op.input_names:
                    if arg_name.lower() == arg_name_lower:
                        for var_name in op.input(arg_name):
                            var = vars[var_name]
                            total_actual_input_size += reduce(
1658 1659
                                lambda x, y: x * y, var.shape
                            )
1660
                        break
1661 1662 1663
        assert (
            total_static_input_size > 0 and total_actual_input_size > 0
        ), "Get input size failed."
1664

1665 1666 1667
        actual_runtime = (
            total_actual_input_size / total_static_input_size * runtime
        )
1668 1669
        return actual_runtime

1670
    import paddle.cost_model as cm
1671

1672
    cost_model = cm.CostModel()
1673 1674 1675 1676 1677 1678 1679 1680 1681
    cost_model.static_cost_data()
    DEFAULT_MULTIPLE = 2
    OP_NAME_MAPPING = {
        "c_embedding": "embedding",
        "matmul_v2": "matmul",
        "transpose2": "transpose",
        "reshape2": "reshape",
        "unsqueeze2": "unsqueeze",
        "reduce_sum": "sum",
1682
        "elementwise_div": "divide",
1683 1684 1685
    }

    standalone_cost_data = []
1686 1687
    # skip ops
    not_enum_ops = [
1688 1689 1690 1691
        "create_py_reader",
        "create_double_buffer_reader",
        "read",
        "assign",
1692
    ]
1693 1694 1695 1696 1697 1698 1699 1700
    for distributed_program in distributed_programs:
        cost_data = {}
        vars = distributed_program.global_block().vars
        for op in distributed_program.global_block().ops:
            runtime = 0
            if op.type in not_enum_ops:
                cost_data[op.desc.id()] = runtime
                continue
1701 1702 1703 1704 1705
            dtype = (
                str(vars[op.input_arg_names[0]].dtype)
                if op.input_arg_names
                else "float32"
            )
1706 1707 1708 1709 1710
            if int(op.attr('op_role')) == int(OpRole.Backward):
                if "_grad" in op.type:
                    forward_op_name = op.type[:-5]
                    if forward_op_name in OP_NAME_MAPPING.keys():
                        forward_op_name = OP_NAME_MAPPING[forward_op_name]
1711 1712 1713
                    op_cost = cost_model.get_static_op_time(
                        forward_op_name, forward=False, dtype=dtype
                    )
1714 1715 1716
                    if op_cost:
                        runtime = _compute_runtime(op_cost, op, vars)
                    else:
1717 1718 1719
                        op_cost = cost_model.get_static_op_time(
                            forward_op_name, dtype=dtype
                        )
1720 1721 1722
                        if op_cost:
                            runtime = 2 * _compute_runtime(op_cost, op, vars)
            elif int(op.attr('op_role')) == int(OpRole.Forward):
1723 1724 1725 1726 1727
                op_name = (
                    OP_NAME_MAPPING[op.type]
                    if op.type in OP_NAME_MAPPING.keys()
                    else op.type
                )
1728 1729 1730 1731 1732 1733 1734 1735 1736
                op_cost = cost_model.get_static_op_time(op_name)
                if op_cost:
                    runtime = _compute_runtime(op_cost, op, vars)

            cost_data[op.desc.id()] = runtime

        standalone_cost_data.append(cost_data)

    return standalone_cost_data
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752


def set_dist_op_desc_original_id(dist_op_desc, op_desc, dist_context):
    op_id = op_desc.id()
    op_original_id = op_desc.original_id()
    # First, try to set the original id to the id of the op_desc
    if op_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_id)
        return
    # Second, try to set the original id to the original_id of the op_desc
    elif op_original_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_original_id)
        return
    # Third, print error infomation if we cannot find the original id
    else:
        assert False, "Cannot find the original id in the distributed context"
1753 1754 1755 1756 1757 1758 1759 1760


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]
1761 1762 1763 1764 1765


def debug_program(program, path, name):

    filename = os.path.join(
1766 1767
        path, name + '_program' + ".%d" % (paddle.distributed.get_rank())
    )
1768 1769
    with open(filename, 'w') as f:
        f.write(str(program))
1770 1771 1772 1773 1774 1775 1776


def ring_id_to_process_group(ring_id):
    for g in get_all_process_groups():
        if g.id == ring_id:
            return g
    return None
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788


def find_higher_order_backward_op(program):

    higher_order_op_suffix = ['_grad_grad', 'triple_grad']
    for block in program.blocks:
        for op in block.ops:
            for suffix in higher_order_op_suffix:
                if suffix in op.type:
                    return True

    return False
Z
zhaoyingli 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800


def get_lr(optimizer):
    if isinstance(optimizer, paddle.optimizer.Optimizer):
        return optimizer.get_lr()
    elif isinstance(optimizer, paddle.fluid.optimizer.Optimizer):
        if isinstance(optimizer._learning_rate, float):
            return optimizer._learning_rate
        else:
            return optimizer._learning_rate()
    else:
        raise TypeError(
1801 1802 1803
            "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
            " or `paddle.fluid.optimizer.Optimizer`, but got {}.".format(
                type(optimizer)
Z
zhaoyingli 已提交
1804
            )
1805
        )
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834


def initialize_pg_in_full_mode(all_process_groups, cur_rank):
    import socket
    from ..collective import _get_global_env

    has_recv_by_socket = []
    # This is a magic number
    magic_num = 500
    genv = _get_global_env()
    cur_rank_ip, cur_rank_port = genv.current_endpoint.split(":")
    cur_rank_recv_port = int(cur_rank_port) + magic_num
    server_socket = None
    # Large enough for recv rank
    buff_size = 1024
    server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server_socket.bind((cur_rank_ip, cur_rank_recv_port))
    # The 10 is an empirical value
    server_socket.listen(10)
    client_sockets = {}
    for process_group in all_process_groups:
        if cur_rank not in process_group.ranks:
            continue
        if len(process_group.ranks) == 2:
            index = process_group.ranks.index(cur_rank)
            is_send = True if index == 0 else False
            if is_send:
                recv_rank = process_group.ranks[1]
                recv_rank_ip, recv_rank_port = genv.trainer_endpoints[
1835 1836
                    recv_rank
                ].split(":")
1837
                connect_port = int(recv_rank_port) + magic_num
1838 1839 1840
                client_socket = socket.socket(
                    socket.AF_INET, socket.SOCK_STREAM
                )
1841 1842 1843 1844 1845 1846
                client_socket.connect((recv_rank_ip, connect_port))
                client_socket.send(str(cur_rank).encode('utf-8'))
                rank = client_socket.recv(buff_size).decode('utf-8')
                rank = int(rank)
                if rank != recv_rank:
                    raise ValueError(
1847 1848 1849 1850
                        "Please check comm pair, the recv rank should be {} but got {}.".format(
                            recv_rank, rank
                        )
                    )
1851
                else:
1852 1853 1854 1855 1856
                    print(
                        "It is able to instantiate {} as sender now.".format(
                            process_group.ranks
                        )
                    )
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
                client_socket.close()
            else:
                send_rank = process_group.ranks[0]
                while True:
                    if send_rank not in has_recv_by_socket:
                        client_socket, recv_addr = server_socket.accept()
                        rank = int(client_socket.recv(buff_size).decode())
                        client_sockets[rank] = client_socket
                        has_recv_by_socket.append(rank)
                    else:
                        client_sockets[send_rank].send(
1868 1869
                            str(cur_rank).encode("utf-8")
                        )
1870
                        client_sockets[send_rank].close()
1871 1872 1873 1874 1875
                        print(
                            "It is able to instantiate {} as recver now.".format(
                                process_group.ranks
                            )
                        )
1876 1877 1878
                        break
        process_group.instantiate()
    server_socket.close()
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909


def get_input_split_info(cur_rank, var, dist_context):
    # deduce how the input data is split among the cluster
    tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
    process_mesh = tensor_dist_attr.process_mesh
    dims_mapping = tensor_dist_attr.dims_mapping

    if cur_rank not in process_mesh.processes:
        rank_id = _get_corresponding_rank(dist_context, process_mesh, cur_rank)
    else:
        rank_id = cur_rank

    batch_size_axis = dims_mapping[0]
    if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
        group_ranks = _get_comm_group(
            process_mesh.processes,
            process_mesh.topology,
            batch_size_axis,
            rank_id,
        )
        return len(group_ranks), group_ranks.index(rank_id)

    return 1, 0


def validate_opt(optimizer):
    if optimizer is not None:
        optimizer._parameter_list = None
        optimizer._param_groups = None
    return optimizer
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026


def _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.dims_mapping = py_dist_attr.dims_mapping
    cpp_dist_attr.annotated = py_dist_attr._is_annotated


def _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
    if not cpp_process_mesh.empty():
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.dims_mapping = cpp_dist_attr.dims_mapping
    py_dist_attr._is_annotated = cpp_dist_attr.annotated


def _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.impl_type = py_dist_attr.impl_type
    cpp_dist_attr.impl_idx = py_dist_attr.impl_idx
    cpp_dist_attr.annotated = py_dist_attr._is_annotated
    for name, py_tensor_dist_attr in py_dist_attr.inputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)
    for name, py_tensor_dist_attr in py_dist_attr.outputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)


def _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
    if not cpp_process_mesh.empty():
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.impl_type = cpp_dist_attr.impl_type
    py_dist_attr.impl_idx = cpp_dist_attr.impl_idx
    py_dist_attr._is_annotated = cpp_dist_attr.annotated
    py_dist_attr.op_type = cpp_dist_attr.op.type()
    for name, cpp_tensor_dist_attr in cpp_dist_attr.inputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )
    for name, cpp_tensor_dist_attr in cpp_dist_attr.outputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )


def _copy_dist_attr_to_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_to_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_to_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_from_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_from_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_from_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_to_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)


def _copy_dist_attr_from_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)