prelu_op.cu 6.6 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
14

N
nhzlx 已提交
15 16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/prelu.h"
#include "paddle/fluid/operators/prelu_op.h"
18
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
N
nhzlx 已提交
19 20 21 22 23 24 25
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

26 27 28 29 30 31
#define CUDA_NUM_THREADS 1024

inline static int PADDLE_GET_BLOCKS(const int N) {
  return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
}

N
nhzlx 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
template <typename DeviceContext, typename T>
class CUDAPReluKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* alpha = context.Input<Tensor>("Alpha");
    auto* out = context.Output<Tensor>("Out");

    const T* x_ptr = x->data<T>();
    T* o_ptr = out->mutable_data<T>(context.GetPlace());

    const T* alpha_ptr = alpha->data<T>();
    auto& mode = context.Attr<std::string>("mode");

    int numel = x->numel();
    auto dim = x->dims();
48 49 50

    VLOG(4) << "dim[0]:" << dim[0] << ", dim[1]:" << dim[1]
            << ", numel:" << numel;
N
nhzlx 已提交
51 52 53 54

    if (mode == "channel") {
      math::PreluChannelWiseDirectCUDAFunctor<T> prelu_channel_wise;
      prelu_channel_wise(context.cuda_device_context().stream(), x_ptr,
55
                         alpha_ptr, o_ptr, dim[0], dim[1], numel);
N
nhzlx 已提交
56 57 58
    } else if (mode == "element") {
      math::PreluElementWiseDirectCUDAFunctor<T> prelu_element_wise;
      prelu_element_wise(context.cuda_device_context().stream(), x_ptr,
59
                         alpha_ptr, o_ptr, dim[0], numel);
N
nhzlx 已提交
60 61 62
    } else {
      math::PreluScalarDirectCUDAFunctor<T> prelu_scalar;
      prelu_scalar(context.cuda_device_context().stream(), x_ptr, alpha_ptr,
63
                   o_ptr, numel);
N
nhzlx 已提交
64 65 66 67
    }
  }
};

68
enum PRELU_MODE { Element, Channel, Scalar };
69 70

template <typename T>
71 72 73 74 75
__global__ void PReluOpGradKernel(const T* x_ptr, const T* alpha_ptr,
                                  const T* dy_ptr, T* dx_ptr, T* dalpha_ptr,
                                  size_t channel_num, size_t plane_size,
                                  size_t spatial_size, size_t numel,
                                  PRELU_MODE mode) {
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  CUDA_KERNEL_LOOP(index, numel) {
    T scale;
    if (mode == Element) {
      size_t element_index = index % spatial_size;
      scale = alpha_ptr[element_index];
    } else if (mode == Channel) {
      size_t temp = index / plane_size;
      size_t channel_index = temp % channel_num;
      scale = alpha_ptr[channel_index];
    } else {
      scale = alpha_ptr[0];
    }
    T x = x_ptr[index];
    T dy = dy_ptr[index];
    if (dx_ptr != nullptr) dx_ptr[index] = (x > 0) ? dy : scale * dy;
    if (dalpha_ptr != nullptr) dalpha_ptr[index] = (x > 0) ? 0 : x * dy;
92 93 94
  }
}

95 96
template <typename T>
class PreluOpGradFunctor {
97
 public:
98
  void operator()(gpuStream_t stream, const T* x, const T* alpha, const T* dy,
99
                  T* dx, T* dalpha, const framework::DDim& input_dims,
100
                  PRELU_MODE mode) {
101 102 103 104 105 106 107
    size_t numel = 1;
    for (size_t i = 0; i < input_dims.size(); ++i) {
      numel *= input_dims[i];
    }
    size_t plane_size = numel / input_dims[0] / input_dims[1];
    size_t spatial_size = numel / input_dims[0];

108 109
    PReluOpGradKernel<
        T><<<PADDLE_GET_BLOCKS(numel), CUDA_NUM_THREADS, 0, stream>>>(
110
        x, alpha, dy, dx, dalpha, input_dims[1], plane_size, spatial_size,
111
        numel, mode);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  }
};

template <typename T>
struct IdentityFunctor {
  HOSTDEVICE inline T operator()(const T& x) const { return x; }
};

template <typename DeviceContext, typename T>
class CUDAPReluGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* alpha = context.Input<Tensor>("Alpha");
    auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* dalpha = context.Output<Tensor>(framework::GradVarName("Alpha"));

    const T* x_ptr = x->data<T>();
    const T* alpha_ptr = alpha->data<T>();
    const T* dy_ptr = dy->data<T>();
    T* dx_ptr = dx ? dx->mutable_data<T>(context.GetPlace()) : nullptr;
    T* dalpha_ptr =
        dalpha ? dalpha->mutable_data<T>(context.GetPlace()) : nullptr;

    if (!dx && !dalpha) return;

    auto& mode = context.Attr<std::string>("mode");

    int numel = x->numel();
    auto dim = x->dims();
143
    std::vector<int> input_shape = framework::vectorize<int>(dim);
144 145 146 147
    auto stream = context.cuda_device_context().stream();

    T* dalpha_tmp_ptr;
    Tensor dalpha_tmp;
148
    if (dalpha_ptr == nullptr) {
149 150 151 152 153 154 155
      dalpha_tmp_ptr = dalpha_ptr;
    } else {
      auto& dev_ctx = context.template device_context<DeviceContext>();
      dalpha_tmp = context.AllocateTmpTensor<T, DeviceContext>(dim, dev_ctx);
      dalpha_tmp_ptr = dalpha_tmp.mutable_data<T>(context.GetPlace());
    }

156
    PRELU_MODE m;
157
    if (mode == "element") {
158
      m = Element;
159
    } else if (mode == "channel") {
160
      m = Channel;
161
    } else {
162
      m = Scalar;
163
    }
164
    PreluOpGradFunctor<T> prelu_grad;
165 166
    prelu_grad(stream, x_ptr, alpha_ptr, dy_ptr, dx_ptr, dalpha_tmp_ptr, dim,
               m);
167

168
    if (dalpha_tmp_ptr == nullptr) return;
169 170

    std::vector<int> reduce_dims;
171
    for (size_t i = 0; i < dim.size(); i++) {
172
      if (mode == "channel" && i == 1) continue;
173
      if (mode == "element" && i != 0) continue;
174 175 176 177 178 179 180 181 182
      reduce_dims.push_back(i);
    }

    TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
        dalpha_tmp, dalpha, reduce_dims, static_cast<T>(0), cub::Sum(),
        IdentityFunctor<T>(), stream);
  }
};

N
nhzlx 已提交
183 184 185 186 187 188 189
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    prelu, ops::CUDAPReluKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CUDAPReluKernel<paddle::platform::CUDADeviceContext, double>);
190 191 192 193
REGISTER_OP_CUDA_KERNEL(
    prelu_grad,
    ops::CUDAPReluGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CUDAPReluGradKernel<paddle::platform::CUDADeviceContext, double>);