sgd.py 6.1 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import warnings
16

17
from paddle import _C_ops
18

19
from ..fluid import framework
20
from ..fluid.dygraph import no_grad
21
from ..fluid.framework import in_dygraph_mode
22
from .optimizer import Optimizer
J
Jiawei Wang 已提交
23

24 25
__all__ = []

J
Jiawei Wang 已提交
26 27

class SGD(Optimizer):
28
    r"""
J
Jiawei Wang 已提交
29 30 31 32 33 34 35 36 37
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Parameters:
        learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
            It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
38
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
J
Jiawei Wang 已提交
39
            This parameter is required in dygraph mode. \
40
            The default value is None in static graph mode, at this time all parameters will be updated.
J
Jiawei Wang 已提交
41
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
42 43 44 45 46 47
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
J
Jiawei Wang 已提交
48 49 50 51 52 53
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
54 55
                :ref:`api_guide_Name` .

J
Jiawei Wang 已提交
56 57 58 59
    Examples:
        .. code-block:: python

            import paddle
60 61

            inp = paddle.uniform(min=-0.1, max=0.1, shape=[10, 10], dtype='float32')
J
Jiawei Wang 已提交
62 63 64 65 66
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
67
            out.backward()
J
Jiawei Wang 已提交
68 69 70 71 72
            sgd.step()
            sgd.clear_grad()

    """

73 74 75 76 77 78 79 80 81
    def __init__(
        self,
        learning_rate=0.001,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        multi_precision=False,
        name=None,
    ):
J
Jiawei Wang 已提交
82 83
        if learning_rate is None:
            raise ValueError("learning_rate is not set")
84
        super().__init__(
85 86 87 88 89 90
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
J
Jiawei Wang 已提交
91
        self.type = "sgd"
92 93 94 95 96 97 98 99 100 101
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
102
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
103 104
                master_p = self._create_master_weight(p)
                continue
105
            if (
106
                self._is_dtype_fp16_or_bf16(p.dtype)
107 108
                and not self._multi_precision
            ):
109
                warnings.warn(
110
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
111 112
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
J
Jiawei Wang 已提交
113

114
    @no_grad
J
Jiawei Wang 已提交
115
    def _append_optimize_op(self, block, param_and_grad):
116 117
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
118

119 120
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
121 122 123 124 125 126
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
127

J
Jiawei Wang 已提交
128
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
129
        if in_dygraph_mode():
130 131 132 133 134 135 136
            _C_ops.sgd_(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                find_master,
            )
Z
zyfncg 已提交
137
            return None
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        else:
            assert isinstance(block, framework.Block)
            # create the optimize op
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
            }

            outputs = {"ParamOut": param_and_grad[0]}

            attrs = {"multi_precision": find_master}

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

            sgd_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
161
            )
J
Jiawei Wang 已提交
162

163
            return sgd_op
164 165 166 167

    def _update_param_group(self, parameters):
        parameters = parameters.get('params')
        return parameters