batch_norm_op.cc 17.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/batch_norm_op.h"
Q
QI JUN 已提交
16
#include "paddle/framework/data_layout.h"
Q
Qiao Longfei 已提交
17 18 19 20 21

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
Qiao Longfei 已提交
22
using LoDTensor = framework::LoDTensor;
Q
QI JUN 已提交
23
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

class BatchNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Bias"), "");
    PADDLE_ENFORCE(ctx->HasInput("Mean"), "");
    PADDLE_ENFORCE(ctx->HasInput("Variance"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "");
    PADDLE_ENFORCE(ctx->HasOutput("MeanOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), "");

53 54 55 56
    const float epsilon = ctx->Attrs().Get<float>("epsilon");
    PADDLE_ENFORCE_GE(epsilon, 0.0, "epsilon should be larger than 0");
    PADDLE_ENFORCE_LE(epsilon, 0.001, "epsilon should not be too large");

Q
Qiao Longfei 已提交
57 58 59 60 61 62 63 64
    // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
    PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
                      "Mean and MeanOut should share the same memory");
    PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0],
                      ctx->Outputs("VarianceOut")[0],
                      "Variance and VarianceOut should share the same memory");

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
65 66
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
67 68 69 70

    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "Input X must have 2 to 5 dimensions.");

Q
Qiao Longfei 已提交
71
    const int C =
Q
QI JUN 已提交
72 73
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], C);

    ctx->SetOutputDim("Y", x_dims);
    ctx->SetOutputDim("MeanOut", {C});
    ctx->SetOutputDim("VarianceOut", {C});
    ctx->SetOutputDim("SavedMean", {C});
    ctx->SetOutputDim("SavedVariance", {C});
  }
};

class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
90
  BatchNormOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Q
Qiao Longfei 已提交
91 92 93 94
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddAttr<bool>("is_test", "").SetDefault(false);
    AddAttr<float>("momentum", "").SetDefault(0.9);
    AddAttr<float>("epsilon", "").SetDefault(1e-5);
Q
QI JUN 已提交
95
    AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
Q
Qiao Longfei 已提交
96 97 98
    AddInput("X", "The input tensor");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size C "
99
             "that is applied to the output");
Q
Qiao Longfei 已提交
100 101
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size C "
102
             "that is applied to the output");
Q
Qiao Longfei 已提交
103
    AddInput("Mean",
104
             "The global mean (for training) or "
Q
Qiao Longfei 已提交
105 106 107
             "estimated mean (for testing)");
    AddInput("Variance",
             "The global variance (for training) "
108
             "or estimated Variance (for testing)");
Q
Qiao Longfei 已提交
109 110 111 112 113 114 115 116 117
    AddOutput("Y", "result after normalization");
    AddOutput("MeanOut",
              "Share memory with Mean. "
              "Store the global mean when training");
    AddOutput("VarianceOut",
              "Share memory with Variance. "
              "Store the global Variance when training");
    AddOutput("SavedMean",
              "Mean of the current mini batch, "
Q
Qiao Longfei 已提交
118 119
              "will apply to output when training")
        .AsIntermediate();
Q
Qiao Longfei 已提交
120 121
    AddOutput("SavedVariance",
              "Variance of the current mini batch, "
Q
Qiao Longfei 已提交
122 123
              "will apply to output when training")
        .AsIntermediate();
Q
Qiao Longfei 已提交
124
    AddComment(R"DOC(
125
Batch Normalization.
Q
Qiao Longfei 已提交
126

127 128 129 130 131 132
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
133 134 135 136 137 138

)DOC");
  }
};

template <typename T>
Q
QI JUN 已提交
139 140
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
141 142 143 144 145
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
Q
QI JUN 已提交
146 147 148
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
149 150 151

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
152 153
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
154 155
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
156 157
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

    if (!is_test) {
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

Q
QI JUN 已提交
182 183
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
184 185 186 187 188 189 190 191 192 193 194 195
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
196
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
210
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
      }

      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);
      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
    if (is_test) {
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
        is_test ? ctx.Input<Tensor>("Mean")->data<T>()
                : ctx.Output<Tensor>("SavedMean")->data<T>(),
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
252 253
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
254 255 256 257 258 259 260 261
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
262
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
263 264 265 266 267 268 269 270 271
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
272
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    }
  }
};

class BatchNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
    PADDLE_ENFORCE(ctx->HasInput("X"));
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "");
    PADDLE_ENFORCE(ctx->HasInput("SavedMean"), "");
    PADDLE_ENFORCE(ctx->HasInput("SavedVariance"), "");

    // check output
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Scale")), "");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), "");

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
295 296
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
297
    const int C =
Q
QI JUN 已提交
298 299
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
300 301 302 303 304

    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
  }
Q
Qiao Longfei 已提交
305

Y
Yu Yang 已提交
306
 protected:
Q
Qiao Longfei 已提交
307
  framework::OpKernelType GetActualKernelType(
Q
Qiao Longfei 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
Y
Yu Yang 已提交
322
    return framework::OpKernelType(framework::ToDataType(t->type()),
Q
QI JUN 已提交
323
                                   ctx.GetPlace());
Q
Qiao Longfei 已提交
324
  }
Q
Qiao Longfei 已提交
325 326 327
};

template <typename T>
Q
QI JUN 已提交
328
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
329 330 331 332 333 334 335 336 337
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
338 339 340
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
341 342 343 344

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
345 346
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
347 348
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
349 350
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    const int sample_size = x->numel() / N / C;

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> mean_arr(saved_mean->data<T>(), C);
    ConstEigenVectorArrayMap<T> inv_var_arr(saved_inv_variance->data<T>(), C);

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    d_scale->mutable_data<T>(ctx.GetPlace());
    d_bias->mutable_data<T>(ctx.GetPlace());

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))

    EigenVectorArrayMap<T> d_bias_arr(d_bias->mutable_data<T>(ctx.GetPlace()),
                                      C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale->mutable_data<T>(ctx.GetPlace()),
                                       C);

    d_bias_arr.setZero();
    d_scale_arr.setZero();

    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size);

Q
QI JUN 已提交
381 382
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);
        d_x_arr.setZero();

        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          d_bias_arr(c) += d_y_arr.col(nc).sum();
          d_scale_arr(c) +=
              ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
                  .sum();
        }
        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          d_x_arr.col(nc) +=
              scale_inv_var_nhw(c) *
              (d_y_arr.col(nc) * N * sample_size - d_bias_arr(c) -
               (x_arr.col(nc) - mean_arr[c]) * d_scale_arr(c) * inv_var_arr(c));
        }
        break;
      }
Q
QI JUN 已提交
405
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);
        d_x_arr.setZero();

        const auto d_y_row_sum = d_y_arr.rowwise().sum();
        const auto x_minus_mean = x_arr.colwise() - mean_arr;
        const auto d_y_mul_x_minus_mean_row_sum =
            (d_y_arr * x_minus_mean).rowwise().sum();
        const auto inv_var_sqr = inv_var_arr * inv_var_arr;
        for (int nhw = 0; nhw < N * sample_size; ++nhw) {
          d_bias_arr += d_y_arr.col(nhw);
          d_scale_arr +=
              (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
          d_x_arr.col(nhw) +=
              scale_inv_var_nhw *
              (d_y_arr.col(nhw) * N * sample_size - d_y_row_sum -
               x_minus_mean.col(nhw) * inv_var_sqr *
                   d_y_mul_x_minus_mean_row_sum);
        }
        break;
      }
      default:
Q
QI JUN 已提交
430
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
431 432 433 434 435 436 437 438 439 440
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
            batch_norm_grad, ops::BatchNormGradOp);
Q
QI JUN 已提交
441 442 443
REGISTER_OP_CPU_KERNEL(
    batch_norm,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>);
Q
Qiao Longfei 已提交
444 445
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
Q
QI JUN 已提交
446
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>);