gradient_checker.py 30.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
Jiawei Wang 已提交
14
"""This is the lib for gradient checker unittest."""
15

16
from collections.abc import Sequence
17 18
from itertools import product

19 20 21
import numpy as np

import paddle
22 23
from paddle import fluid
from paddle.fluid import core
24
from paddle.fluid.backward import _append_grad_suffix_, _as_list
25

26 27

def _product(t):
28
    return int(np.product(t))
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


def dtype_to_np_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return np.float32
    elif dtype == core.VarDesc.VarType.FP64:
        return np.float64
    elif dtype == core.VarDesc.VarType.FP16:
        return np.float16
    else:
        raise ValueError("Not supported data type " + str(dtype))


def _get_item(t, i, np_dtype):
    if np_dtype == np.float16:
        np_t = np.array(t).astype(np.float16)
        np_t = np_t.flatten()
        return np_t[i]
    elif np_dtype == np.float32:
        return t._get_float_element(i)
    elif np_dtype == np.float64:
        return t._get_double_element(i)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))


55
def _set_item(t, i, e, np_dtype, place):
56 57 58 59 60
    if np_dtype == np.float16:
        np_t = np.array(t).astype(np.float16)
        shape = np_t.shape
        np_t = np_t.flatten()
        np_t[i] = e
61
        np_t = np_t.reshape(shape)
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        t.set(np_t, place)
    elif np_dtype == np.float32:
        t._set_float_element(i, e)
    elif np_dtype == np.float64:
        t._set_double_element(i, e)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))


def set_var_in_scope(scope, place, name, value, recursive_seq_len=None):
    t = scope.var(name).get_tensor()
    t.set(value, place)
    if recursive_seq_len:
        t.set_recursive_sequence_lengths(recursive_seq_len)
    return t


Q
qingqing01 已提交
79 80 81 82
def var_to_np_array_in_scope(scope, place, name):
    return np.array(scope.var(name).get_tensor())


83 84 85
def make_jacobian(x, y_size, np_dtype):
    if isinstance(x, fluid.framework.Variable):
        return np.zeros((_product(x.shape), y_size), dtype=np_dtype)
86
    elif isinstance(x, Sequence):
87
        jacobians = list(
88 89 90 91 92
            filter(
                lambda t: t is not None,
                (make_jacobian(item, y_size, np_dtype) for item in x),
            )
        )
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        return jacobians
    else:
        None


def _compute_numerical_jacobian(program, x, y, place, scope, delta):
    """Computes the numeric Jacobian for dy/dx.

    Computes the numeric Jacobian by slightly perturbing the inputs and
    measuring the differences on the output.

    Args:
        program (Program): the network program.
        x (Variable): the input variables.
        y (list[Variable]): the output variables.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        scope (Scope): the scope used to run program.
        delta: the amount of perturbation we give to the input

    Returns:
        A list of 2-D numpy array, the list length is len(y).
        Each 2-D numpy array represents the Jacobian for dy_i/dx.
        It has "x_size" rows and "y_size" columns
        where "x_size" is the number of elements in x and
        "y_size" is the number of elements in each y_i.
    """
    if not isinstance(x, fluid.framework.Variable):
        raise TypeError('x is not Variable')

    # To compute the jacobian, treat x and y as one-dimensional vectors.
    y = _as_list(y)
    exe = fluid.Executor(place)

    def run():
        y_res = exe.run(program, scope=scope, fetch_list=y)
        return [yi.flatten() for yi in y_res]

    x_name = x.name
    x_shape = x.shape
    x_size = _product(x_shape)
    x_t = scope.find_var(x_name).get_tensor()

    np_type = dtype_to_np_dtype(x.dtype)
    jacobian = [make_jacobian(x, _product(yi.shape), np_type) for yi in y]

138
    for i in range(x_size):
139 140
        orig = _get_item(x_t, i, np_type)
        x_pos = orig + delta
141
        _set_item(x_t, i, x_pos, np_type, place)
142 143 144
        y_pos = run()

        x_neg = orig - delta
145
        _set_item(x_t, i, x_neg, np_type, place)
146 147
        y_neg = run()

148
        _set_item(x_t, i, orig, np_type, place)
149

150
        for j in range(len(y)):
151
            jacobian[j][i, :] = (y_pos[j] - y_neg[j]) / delta / 2.0
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

    return jacobian


def _compute_analytical_jacobian(program, x, y, place, scope):
    """Computes the analytical Jacobian for dy/dx.

    Args:
        program (Program): a Program with forward pass.
        x (Variable|list[Variable]): a variable or list of variable
        y (Variable): the target variable.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        scope (Scope): the scope used to run program.

    Returns:
        A list of 2-D numpy array. The list length is len(x).
        Each 2-D numpy array represents the Jacobian for dy/dx_i.
        It has "xi_size" rows and "dy_size" columns
        where "x_size" is the number of elements in x_i and
        "dy_size" is the number of elements in y.
    """
    if not isinstance(y, fluid.framework.Variable):
        raise TypeError('y is not Variable')

    dy_name = _append_grad_suffix_(y.name)

    np_type = dtype_to_np_dtype(y.dtype)
    # create dy Variable in Program
180 181 182
    dy = program.global_block().create_var(
        name=dy_name, shape=y.shape, dtype=np_type, persistable=True
    )
183
    # append backward
184
    dx = fluid.gradients(y, x, dy)
185 186 187 188 189 190 191 192 193 194 195 196

    # init dy tensor in scope
    value = np.zeros(y.shape, dtype=np_type)
    dy_t = set_var_in_scope(scope, place, dy_name, value)

    exe = fluid.Executor(place)

    y_size = _product(y.shape)

    x = _as_list(x)
    jacobian = make_jacobian(x, y_size, np_type)

197 198 199 200 201
    # filter None in dx for DX/DY may be None in kernel
    # only fetch not None dx in exe.run
    filted = [(i, dxi) for i, dxi in enumerate(dx) if dxi is not None]
    filted_idx, filted_dx = zip(*filted)

202
    for i in range(y_size):
203
        _set_item(dy_t, i, 1, np_type, place)
204

205
        dx_res = exe.run(program, scope=scope, fetch_list=filted_dx)
206

207
        for j in range(len(filted_dx)):
208
            dx_idx = filted_idx[j]
Q
qingqing01 已提交
209
            if dx_res[j] is not None:
210
                jacobian[dx_idx][:, i] = dx_res[j].flatten()
Q
qingqing01 已提交
211
            else:
212 213 214
                jacobian[dx_idx][:, i] = np.zeros(
                    dx[dx_idx].shape, dtype=np_type
                ).flatten()
Q
qingqing01 已提交
215

216
        _set_item(dy_t, i, 0, np_type, place)
217 218 219 220

    return jacobian


221 222 223 224 225 226 227 228 229 230 231
def grad_check(
    x,
    y,
    x_init=None,
    place=None,
    program=None,
    eps=1e-6,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    """
    Check numerical and analytical gradients for dy/dx.
    Each Jacobian gradients is a 2-D array with shape [xi_size, yi_size].

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    y = _as_list(y)
Q
qingqing01 已提交
260

261 262 263
    for v in x:
        v.stop_gradient = False
        v.persistable = True
264 265 266
    for u in y:
        u.stop_gradient = False
        u.persistable = True
267 268 269 270 271 272 273 274 275 276 277 278 279 280
    if place is None:
        place = fluid.CPUPlace()
    if program is None:
        program = fluid.default_main_program()

    # init variable in strtup program
    scope = fluid.executor.global_scope()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    x_init = _as_list(x_init)
    # init inputs if x_init is not None
    if x_init:
        if len(x_init) != len(x):
281 282 283 284
            raise ValueError(
                'len(x_init) (=%d) is not the same'
                ' as len(x) (= %d)' % (len(x_init), len(x))
            )
285 286 287 288 289 290 291 292 293 294 295 296 297
        # init variable in main program
        for var, arr in zip(x, x_init):
            assert var.shape == arr.shape
        feeds = {k.name: v for k, v in zip(x, x_init)}
        exe.run(program, feed=feeds, scope=scope)

    # [x_idx, y_idx]
    numerical = [
        _compute_numerical_jacobian(program, xi, y, place, scope, eps)
        for xi in x
    ]

    # [y_idx, x_idx]
Q
qingqing01 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    analytical = []
    for yi in y:
        prog = program.clone()

        clone_x = []
        clone_y = None
        for b in prog.blocks:
            if b.has_var(yi.name):
                clone_y = b.var(yi.name)
                break
        for xi in x:
            for b in prog.blocks:
                if b.has_var(xi.name):
                    clone_x.append(b.var(xi.name))
                    break
        analytical.append(
314 315
            _compute_analytical_jacobian(prog, clone_x, clone_y, place, scope)
        )
316

317
    for i, (x_idx, y_idx) in enumerate(
318 319
        product(*[range(len(x)), range(len(y))])
    ):
320 321 322
        a = analytical[y_idx][x_idx]
        n = numerical[x_idx][y_idx]
        if not np.allclose(a, n, rtol, atol):
323 324 325 326 327 328
            msg = (
                'Jacobian mismatch for output %s '
                'with respect to input %s on %s,\n'
                'numerical:%s\nanalytical:%s\n'
                % (y[y_idx].name, x[x_idx].name, str(place), n, a)
            )
329 330 331 332
            return fail_test(msg)
    return True


333 334 335 336 337 338 339 340 341 342 343 344
def double_grad_check(
    x,
    y,
    x_init=None,
    y_grads=None,
    place=None,
    program=None,
    eps=1e-6,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    """
    Check gradients of gradients. This function will append backward to the
    program before second order gradient check.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """
    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
371 372 373
    for u in y:
        u.stop_gradient = False
        u.persistable = True
374 375 376 377 378 379 380

    if program is None:
        program = fluid.default_main_program()

    if y_grads is None:
        scope = fluid.executor.global_scope()
        y_grads = []
Q
qingqing01 已提交
381
        y_grads_init = []
382 383 384
        for yi in y:
            dyi_name = _append_grad_suffix_(yi.name)
            np_type = dtype_to_np_dtype(yi.dtype)
385 386 387
            dy = program.global_block().create_var(
                name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
            )
388 389 390 391
            dy.stop_gradient = False
            v = np.random.random(size=yi.shape).astype(np_type)
            set_var_in_scope(scope, place, dyi_name, v)
            y_grads.append(dy)
Q
qingqing01 已提交
392
            y_grads_init.append(v)
393 394
    else:
        y_grads = _as_list(y_grads)
Q
qingqing01 已提交
395 396 397
        y_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name) for v in y_grads
        ]
398 399

    # append first order grads
400
    target_grads = fluid.gradients(y, x, y_grads)
Q
qingqing01 已提交
401 402 403 404 405 406 407

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init = _as_list(x_init)
    x_init += y_grads_init

408
    grad_check(x, target_grads, x_init, place, program, eps, atol, rtol)
409 410


411
# TODO(jiabin): We currently support only triple grad check here, extend this to support
412 413 414 415
# higher order differenciation later.


# check triple grad and two outputs of the triple Kernel
416 417 418 419 420 421 422 423 424 425 426 427 428
def triple_grad_check(
    x,
    y,
    x_init=None,
    y_grads=None,
    x_grads_grads=None,
    place=None,
    program=None,
    eps=1e-6,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    """
    Check triple gradients. This function will append backward to the
    program before third order gradient check.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y.
        x_grads_grads (numpy.array|list[numpy.array]|None): the gradients with respect to your input.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """
    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
456 457 458
    for u in y:
        u.stop_gradient = False
        u.persistable = True
459 460 461 462 463 464 465 466 467 468 469

    if program is None:
        program = fluid.default_main_program()

    if y_grads is None:
        scope = fluid.executor.global_scope()
        y_grads = []
        y_grads_init = []
        for yi in y:
            dyi_name = _append_grad_suffix_(yi.name)
            np_type = dtype_to_np_dtype(yi.dtype)
470 471 472
            dy = program.global_block().create_var(
                name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
            )
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
            dy.stop_gradient = False
            v = np.random.random(size=yi.shape).astype(np_type)
            set_var_in_scope(scope, place, dyi_name, v)
            y_grads.append(dy)
            y_grads_init.append(v)
    else:
        y_grads = _as_list(y_grads)
        y_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name) for v in y_grads
        ]

    # append first order grads
    target_grads = fluid.gradients(y, x, y_grads)

    if x_grads_grads is None:
        scope = fluid.executor.global_scope()
        x_grads_grads = []
        x_grads_grads_init = []
        for dxi in target_grads:
            ddxi_name = _append_grad_suffix_(dxi.name)
            np_type = dtype_to_np_dtype(dxi.dtype)
494 495 496
            ddx = program.global_block().create_var(
                name=ddxi_name, shape=dxi.shape, dtype=np_type, persistable=True
            )
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
            ddx.stop_gradient = False
            v = np.random.random(size=dxi.shape).astype(np_type)
            set_var_in_scope(scope, place, ddxi_name, v)
            x_grads_grads.append(ddx)
            x_grads_grads_init.append(v)
    else:
        x_grads_grads = _as_list(x_grads_grads)
        x_grads_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name)
            for v in x_grads_grads
        ]
    x += y_grads
    x_init = _as_list(x_init)
    x_init += y_grads_init

512 513 514 515
    # append second order grads
    target_grads_grads = fluid.gradients(target_grads, x, x_grads_grads)

    # filter None in target_grads_grads for Dy/Dx may be None in kernel
516 517 518
    filted = [
        (i, dyi) for i, dyi in enumerate(target_grads_grads) if dyi is not None
    ]
519 520
    filted_idx, filted_target_grads_grads = zip(*filted)

521 522 523 524
    x += x_grads_grads
    x_init += x_grads_grads_init

    # x <=> [x, dout, ddx]
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    grad_check(
        x=x,
        y=filted_target_grads_grads,
        x_init=x_init,
        place=place,
        program=program,
        eps=eps,
        atol=atol,
        rtol=rtol,
    )


def get_static_double_grad(
    x, y, x_init=None, dy_init=None, place=None, program=None
):
540 541 542 543 544 545 546 547 548
    """
    Get Double Grad result of static graph.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
549 550
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
551
    Returns:
C
co63oc 已提交
552
        A list of numpy array that stores second derivative result calculated by static graph.
553 554
    """

555 556
    if program is None:
        program = fluid.default_main_program()
557 558
    scope = fluid.executor.global_scope()
    y_grads = []
559
    for i in range(len(y)):
560 561 562
        yi = y[i]
        dyi_name = _append_grad_suffix_(yi.name)
        np_type = dtype_to_np_dtype(yi.dtype)
563 564 565
        dy = program.global_block().create_var(
            name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
        )
566 567 568 569 570 571 572 573 574 575 576
        dy.stop_gradient = False
        set_var_in_scope(scope, place, dyi_name, dy_init[i])
        y_grads.append(dy)

    # append first order grads
    dx = fluid.gradients(y, x, y_grads)

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init += dy_init
577 578 579 580

    # filter None in dx for DX/DY may be None in kernel
    filted_dx = [dxi for dxi in dx if dxi is not None]
    y = filted_dx
581 582 583 584 585 586 587 588

    # check input arguments
    x = _as_list(x)
    y = _as_list(y)

    for v in x:
        v.stop_gradient = False
        v.persistable = True
589 590 591
    for u in y:
        u.stop_gradient = False
        u.persistable = True
592 593 594 595 596 597 598 599 600 601 602 603 604 605
    if place is None:
        place = fluid.CPUPlace()
    if program is None:
        program = fluid.default_main_program()

    # init variable in strtup program
    scope = fluid.executor.global_scope()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    x_init = _as_list(x_init)
    # init inputs if x_init is not None
    if x_init:
        if len(x_init) != len(x):
606 607 608 609
            raise ValueError(
                'len(x_init) (=%d) is not the same'
                ' as len(x) (= %d)' % (len(x_init), len(x))
            )
610 611 612 613 614 615 616 617 618 619 620
        # init variable in main program
        for var, arr in zip(x, x_init):
            assert var.shape == arr.shape
        feeds = {k.name: v for k, v in zip(x, x_init)}
        exe.run(program, feed=feeds, scope=scope)

    dys = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        dy_name = _append_grad_suffix_(yi.name)
        # create dy Variable in Program
621 622 623
        dy = program.global_block().create_var(
            name=dy_name, shape=yi.shape, dtype=np_type, persistable=True
        )
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
        # init dy tensor in scope
        value = np.ones(yi.shape, dtype=np_type)
        dy_t = set_var_in_scope(scope, place, dy_name, value)
        dys.append(dy)

    # append second order backward
    ddx = fluid.gradients(y, x, dys)
    exe = fluid.Executor(place)

    # filter None in dx for DX/DY may be None in kernel
    # only fetch not None dx in exe.run
    filted = [(i, dxi) for i, dxi in enumerate(ddx) if dxi is not None]
    filted_idx, filted_ddx = zip(*filted)
    ddx_res = exe.run(program, scope=scope, fetch_list=filted_ddx)

    return ddx_res


642 643 644
def get_eager_double_grad(
    func, x_init=None, dy_init=None, place=None, return_mid_result=False
):
645 646 647 648 649 650 651
    """
    Get Double Grad result of dygraph.

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
652
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
653
        return_mid_result (bool): A flag that controls the return content.
654
    Returns:
655
        If 'return_mid_result' set True.
656 657
        the second order derivative and the inputs of second order derivative's calculation
        will be returned for higher order derivative's calculation.
658
        If 'return_mid_result' set False.
659
        A list of numpy array that stores second derivative result calulated by dygraph.
660
    """
661 662 663 664
    if isinstance(place, fluid.CPUPlace):
        paddle.set_device("cpu")
    if isinstance(place, fluid.CUDAPlace):
        paddle.set_device("gpu")
665 666 667 668 669 670 671 672 673 674 675 676
    inputs = []
    dys = []
    for x in x_init:
        input_tensor = paddle.to_tensor(x)
        input_tensor.stop_gradient = False
        inputs.append(input_tensor)
    for dy in dy_init:
        dy_tensor = paddle.to_tensor(dy)
        dy_tensor.stop_gradient = False
        dys.append(dy_tensor)
    # calculate first derivative
    outputs = func(inputs)
677 678 679 680 681 682 683
    d_inputs = paddle.grad(
        outputs=outputs,
        inputs=inputs,
        grad_outputs=dys,
        create_graph=True,
        allow_unused=True,
    )
684
    d_inputs = [d_input for d_input in d_inputs if d_input is not None]
685 686 687 688

    # calcluate second derivative
    inputs = inputs + dys
    ddys = []
689 690 691 692 693
    if return_mid_result:
        create_graph = True
    else:
        create_graph = False

694 695 696 697 698
    for d_input in d_inputs:
        d_input.stop_gradient = False
        ddy = paddle.ones(shape=d_input.shape, dtype=d_input.dtype)
        ddy.stop_gradient = False
        ddys.append(ddy)
699

700 701 702 703 704 705 706
    dd_inputs = paddle.grad(
        outputs=d_inputs,
        inputs=inputs,
        grad_outputs=ddys,
        create_graph=create_graph,
        allow_unused=True,
    )
707

708
    if return_mid_result:
709 710 711
        return [
            dd_input for dd_input in dd_inputs if dd_input is not None
        ], inputs + ddys
712
    else:
713 714 715
        return [
            dd_input.numpy() for dd_input in dd_inputs if dd_input is not None
        ]
716 717


718 719 720 721 722 723 724 725 726 727
def double_grad_check_for_dygraph(
    func,
    x,
    y,
    x_init=None,
    place=None,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
728
    """
729 730
    Check second order gradients of dygraph. This function will compare the
    second order gradients of dygraph and second order gradients of static graph
731
    to validate dygraph's correctness
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
756 757 758
    for u in y:
        u.stop_gradient = False
        u.persistable = True
759 760 761 762 763 764 765 766 767
    y_grads_init = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        v = np.random.random(size=yi.shape).astype(np_type)
        y_grads_init.append(v)

    x_init = _as_list(x_init)

    paddle.disable_static()
768
    eager_double_grad = get_eager_double_grad(func, x_init, y_grads_init, place)
769 770
    paddle.enable_static()

771 772 773
    static_double_grad = get_static_double_grad(
        x, y, x_init, y_grads_init, place
    )
774

775
    if len(static_double_grad) != len(eager_double_grad):
776 777
        msg = (
            "The output grad tensor's number of static graph is different with dygraph, "
778
            "please check the python api unit test used."
779
        )
780 781
        raise RuntimeError(msg)

782
    for i in range(len(static_double_grad)):
783 784 785 786 787 788 789
        if not np.allclose(
            static_double_grad[i], eager_double_grad[i], rtol, atol
        ):
            msg = (
                'Check eager double result fail. Mismatch between static_graph double grad '
                'and eager double grad on %s, the output double grad tensor\'s index is : %d \n'
                'static:%s\n eager:%s\n'
790
                % (str(place), i, static_double_grad[i], eager_double_grad[i])
791
            )
792
            return fail_test(msg)
793 794


795 796 797
def get_static_triple_grad(
    x, y, x_init=None, dy_init=None, place=None, program=None
):
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
    """
    Get Triple Grad result of static graph.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
    Returns:
        A list of numpy array that stores third derivative result calulated by static graph.
    """
    if program is None:
        program = fluid.default_main_program()
    scope = fluid.executor.global_scope()
    y_grads = []
816
    for i in range(len(y)):
817 818 819
        yi = y[i]
        dyi_name = _append_grad_suffix_(yi.name)
        np_type = dtype_to_np_dtype(yi.dtype)
820 821 822
        dy = program.global_block().create_var(
            name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
        )
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
        dy.stop_gradient = False
        set_var_in_scope(scope, place, dyi_name, dy_init[i])
        y_grads.append(dy)

    # append first order grads
    dx = fluid.gradients(y, x, y_grads)

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init += dy_init
    y = dx

    x_grads_grads_init = []
    for dxi in dx:
        np_type = dtype_to_np_dtype(dxi.dtype)
        value = np.ones(dxi.shape, dtype=np_type)
        x_grads_grads_init.append(value)

842 843 844
    return get_static_double_grad(
        x, y, x_init, dy_init=x_grads_grads_init, place=place, program=program
    )
845 846


847 848 849
def get_eager_triple_grad(
    func, x_init=None, dy_init=None, place=None, return_mid_result=False
):
850 851 852 853 854 855 856
    """
    Get triple Grad result of dygraph.

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
857
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
858
        return_mid_result (list[Tensor], list[Tensor]): If set True, the
859 860 861
    Returns:
        A list of numpy array that stores second derivative result calulated by dygraph
    """
862 863 864
    dd_y, dd_x = get_eager_double_grad(
        func, x_init, dy_init, place, return_mid_result=True
    )
865 866 867 868 869 870 871 872

    # calcluate third derivative
    dddys = []
    for dd_yi in dd_y:
        dd_yi.stop_gradient = False
        dddy = paddle.ones(shape=dd_yi.shape, dtype=dd_yi.dtype)
        dddy.stop_gradient = False
        dddys.append(dddy)
873 874 875
    ddd_inputs = paddle.grad(
        outputs=dd_y, inputs=dd_x, grad_outputs=dddys, allow_unused=True
    )
876 877 878
    return [
        ddd_input.numpy() for ddd_input in ddd_inputs if ddd_input is not None
    ]
879 880


881 882 883 884 885 886 887 888 889 890
def triple_grad_check_for_dygraph(
    func,
    x,
    y,
    x_init=None,
    place=None,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
891
    """
892 893
    Check third order gradients of dygraph. This function will compare the
    third order gradients of dygraph and third order gradients of static graph
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
    to validate dygraph's correctness

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
919 920 921
    for u in y:
        u.stop_gradient = False
        u.persistable = True
922 923 924 925 926 927 928 929 930
    y_grads_init = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        v = np.random.random(size=yi.shape).astype(np_type)
        y_grads_init.append(v)

    x_init = _as_list(x_init)

    paddle.disable_static()
931
    eager_triple_grad = get_eager_triple_grad(func, x_init, y_grads_init, place)
932 933
    paddle.enable_static()

934 935 936
    static_triple_grad = get_static_triple_grad(
        x, y, x_init, y_grads_init, place
    )
937

938
    if len(static_triple_grad) != len(eager_triple_grad):
939 940
        msg = (
            "The output grad tensor's number of static graph is different with dygraph, "
941
            "please check the python api unit test used."
942
        )
943 944
        raise RuntimeError(msg)

945
    for i in range(len(static_triple_grad)):
946 947 948 949 950 951 952
        if not np.allclose(
            static_triple_grad[i], eager_triple_grad[i], rtol, atol
        ):
            msg = (
                'Check eager double result fail. Mismatch between static_graph double grad '
                'and eager double grad on %s, the output double grad tensor\'s index is : %d \n'
                'static:%s\n eager:%s\n'
953
                % (str(place), i, static_triple_grad[i], eager_triple_grad[i])
954
            )
955
            return fail_test(msg)