test_sparse_utils_op.py 17.5 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18

19
import paddle
20
from paddle.fluid import core
21

22 23
devices = ['cpu', 'gpu']

24

25 26
class TestSparseCreate(unittest.TestCase):
    def test_create_coo_by_tensor(self):
27 28 29 30 31 32 33 34 35 36 37
        indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        dense_indices = paddle.to_tensor(indices)
        dense_elements = paddle.to_tensor(values, dtype='float32')
        coo = paddle.sparse.sparse_coo_tensor(
            dense_indices, dense_elements, dense_shape, stop_gradient=False
        )
        # test the to_string.py
        assert np.array_equal(indices, coo.indices().numpy())
        assert np.array_equal(values, coo.values().numpy())
38

39
    def test_create_coo_by_np(self):
40 41 42 43 44 45 46
        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        assert np.array_equal(3, coo.nnz())
        assert np.array_equal(indices, coo.indices().numpy())
        assert np.array_equal(values, coo.values().numpy())
47

48
    def test_create_csr_by_tensor(self):
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        dense_crows = paddle.to_tensor(crows)
        dense_cols = paddle.to_tensor(cols)
        dense_elements = paddle.to_tensor(values, dtype='float32')
        stop_gradient = False
        csr = paddle.sparse.sparse_csr_tensor(
            dense_crows,
            dense_cols,
            dense_elements,
            dense_shape,
            stop_gradient=stop_gradient,
        )
64

65
    def test_create_csr_by_np(self):
66 67 68 69 70 71 72 73 74 75
        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        # test the to_string.py
        assert np.array_equal(5, csr.nnz())
        assert np.array_equal(crows, csr.crows().numpy())
        assert np.array_equal(cols, csr.cols().numpy())
        assert np.array_equal(values, csr.values().numpy())
76 77

    def test_place(self):
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        place = core.CPUPlace()
        indices = [[0, 1], [0, 1]]
        values = [1.0, 2.0]
        dense_shape = [2, 2]
        coo = paddle.sparse.sparse_coo_tensor(
            indices, values, dense_shape, place=place
        )
        assert coo.place.is_cpu_place()
        assert coo.values().place.is_cpu_place()
        assert coo.indices().place.is_cpu_place()

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1.0, 2.0, 3.0, 4.0, 5.0]
        csr = paddle.sparse.sparse_csr_tensor(
            crows, cols, values, [3, 5], place=place
        )
        assert csr.place.is_cpu_place()
        assert csr.crows().place.is_cpu_place()
        assert csr.cols().place.is_cpu_place()
        assert csr.values().place.is_cpu_place()
99 100

    def test_dtype(self):
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        indices = [[0, 1], [0, 1]]
        values = [1.0, 2.0]
        dense_shape = [2, 2]
        indices = paddle.to_tensor(indices, dtype='int32')
        values = paddle.to_tensor(values, dtype='float32')
        coo = paddle.sparse.sparse_coo_tensor(
            indices, values, dense_shape, dtype='float64'
        )
        assert coo.dtype == paddle.float64

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1.0, 2.0, 3.0, 4.0, 5.0]
        csr = paddle.sparse.sparse_csr_tensor(
            crows, cols, values, [3, 5], dtype='float16'
        )
        assert csr.dtype == paddle.float16
118 119

    def test_create_coo_no_shape(self):
120 121 122 123 124 125
        indices = [[0, 1], [0, 1]]
        values = [1.0, 2.0]
        indices = paddle.to_tensor(indices, dtype='int32')
        values = paddle.to_tensor(values, dtype='float32')
        coo = paddle.sparse.sparse_coo_tensor(indices, values)
        assert [2, 2] == coo.shape
126 127 128


class TestSparseConvert(unittest.TestCase):
129
    def test_to_sparse_coo(self):
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
        indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
        values = [1.0, 2.0, 3.0, 4.0, 5.0]
        dense_x = paddle.to_tensor(x, dtype='float32', stop_gradient=False)
        out = dense_x.to_sparse_coo(2)
        assert np.array_equal(out.indices().numpy(), indices)
        assert np.array_equal(out.values().numpy(), values)
        # test to_sparse_coo_grad backward
        out_grad_indices = [[0, 1], [0, 1]]
        out_grad_values = [2.0, 3.0]
        out_grad = paddle.sparse.sparse_coo_tensor(
            paddle.to_tensor(out_grad_indices),
            paddle.to_tensor(out_grad_values),
            shape=out.shape,
            stop_gradient=True,
        )
        out.backward(out_grad)
        assert np.array_equal(dense_x.grad.numpy(), out_grad.to_dense().numpy())
148 149

    def test_coo_to_dense(self):
150 151 152 153
        indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
        values = [1.0, 2.0, 3.0, 4.0, 5.0]
        indices_dtypes = ['int32', 'int64']
        for indices_dtype in indices_dtypes:
154
            sparse_x = paddle.sparse.sparse_coo_tensor(
155
                paddle.to_tensor(indices, dtype=indices_dtype),
156 157
                paddle.to_tensor(values),
                shape=[3, 4],
158 159
                stop_gradient=False,
            )
姜永久 已提交
160
            sparse_x.retain_grads()
161 162 163 164 165 166
            dense_tensor = sparse_x.to_dense()
            # test to_dense_grad backward
            out_grad = [
                [1.0, 2.0, 3.0, 4.0],
                [5.0, 6.0, 7.0, 8.0],
                [9.0, 10.0, 11.0, 12.0],
167
            ]
168 169 170 171 172 173 174 175 176 177
            dense_tensor.backward(paddle.to_tensor(out_grad))
            # mask the out_grad by sparse_x.indices()
            correct_x_grad = [2.0, 4.0, 7.0, 9.0, 10.0]
            assert np.array_equal(
                correct_x_grad, sparse_x.grad.values().numpy()
            )

            paddle.device.set_device("cpu")
            sparse_x_cpu = paddle.sparse.sparse_coo_tensor(
                paddle.to_tensor(indices, dtype=indices_dtype),
178
                paddle.to_tensor(values),
179
                shape=[3, 4],
180 181
                stop_gradient=False,
            )
姜永久 已提交
182
            sparse_x_cpu.retain_grads()
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
            dense_tensor_cpu = sparse_x_cpu.to_dense()
            dense_tensor_cpu.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(
                correct_x_grad, sparse_x_cpu.grad.values().numpy()
            )

    def test_to_sparse_csr(self):
        x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_x = paddle.to_tensor(x)
        out = dense_x.to_sparse_csr()
        assert np.array_equal(out.crows().numpy(), crows)
        assert np.array_equal(out.cols().numpy(), cols)
        assert np.array_equal(out.values().numpy(), values)

        dense_tensor = out.to_dense()
        assert np.array_equal(dense_tensor.numpy(), x)

    def test_coo_values_grad(self):
        indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
        values = [1.0, 2.0, 3.0, 4.0, 5.0]
        sparse_x = paddle.sparse.sparse_coo_tensor(
            paddle.to_tensor(indices),
            paddle.to_tensor(values),
            shape=[3, 4],
            stop_gradient=False,
        )
姜永久 已提交
212
        sparse_x.retain_grads()
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        values_tensor = sparse_x.values()
        out_grad = [2.0, 3.0, 5.0, 8.0, 9.0]
        # test coo_values_grad
        values_tensor.backward(paddle.to_tensor(out_grad))
        assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
        indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
        values = [
            [1.0, 1.0],
            [2.0, 2.0],
            [3.0, 3.0],
            [4.0, 4.0],
            [5.0, 5.0],
        ]
        sparse_x = paddle.sparse.sparse_coo_tensor(
            paddle.to_tensor(indices),
            paddle.to_tensor(values),
            shape=[3, 4, 2],
            stop_gradient=False,
        )
姜永久 已提交
232
        sparse_x.retain_grads()
233 234 235 236 237 238 239 240 241 242 243
        values_tensor = sparse_x.values()
        out_grad = [
            [2.0, 2.0],
            [3.0, 3.0],
            [5.0, 5.0],
            [8.0, 8.0],
            [9.0, 9.0],
        ]
        # test coo_values_grad
        values_tensor.backward(paddle.to_tensor(out_grad))
        assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
244

245
    def test_sparse_coo_tensor_grad(self):
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        for device in devices:
            if device == 'cpu' or (
                device == 'gpu' and paddle.is_compiled_with_cuda()
            ):
                paddle.device.set_device(device)
                indices = [[0, 1], [0, 1]]
                values = [1, 2]
                indices = paddle.to_tensor(indices, dtype='int32')
                values = paddle.to_tensor(
                    values, dtype='float32', stop_gradient=False
                )
                sparse_x = paddle.sparse.sparse_coo_tensor(
                    indices, values, shape=[2, 2], stop_gradient=False
                )
                grad_indices = [[0, 1], [1, 1]]
                grad_values = [2, 3]
                grad_indices = paddle.to_tensor(grad_indices, dtype='int32')
                grad_values = paddle.to_tensor(grad_values, dtype='float32')
                sparse_out_grad = paddle.sparse.sparse_coo_tensor(
                    grad_indices, grad_values, shape=[2, 2]
                )
                sparse_x.backward(sparse_out_grad)
                correct_values_grad = [0, 3]
                assert np.array_equal(correct_values_grad, values.grad.numpy())

                # test the non-zero values is a vector
                values = [[1, 1], [2, 2]]
                values = paddle.to_tensor(
                    values, dtype='float32', stop_gradient=False
                )
                sparse_x = paddle.sparse.sparse_coo_tensor(
                    indices, values, shape=[2, 2, 2], stop_gradient=False
                )
                grad_values = [[2, 2], [3, 3]]
                grad_values = paddle.to_tensor(grad_values, dtype='float32')
                sparse_out_grad = paddle.sparse.sparse_coo_tensor(
                    grad_indices, grad_values, shape=[2, 2, 2]
                )
                sparse_x.backward(sparse_out_grad)
                correct_values_grad = [[0, 0], [3, 3]]
                assert np.array_equal(correct_values_grad, values.grad.numpy())
287

288
    def test_sparse_coo_tensor_sorted(self):
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        for device in devices:
            if device == 'cpu' or (
                device == 'gpu' and paddle.is_compiled_with_cuda()
            ):
                paddle.device.set_device(device)
                # test unsorted and duplicate indices
                indices = [[1, 0, 0], [0, 1, 1]]
                values = [1.0, 2.0, 3.0]
                indices = paddle.to_tensor(indices, dtype='int32')
                values = paddle.to_tensor(values, dtype='float32')
                sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
                sparse_x = paddle.sparse.coalesce(sparse_x)
                indices_sorted = [[0, 1], [1, 0]]
                values_sorted = [5.0, 1.0]
                assert np.array_equal(
                    indices_sorted, sparse_x.indices().numpy()
                )
                assert np.array_equal(values_sorted, sparse_x.values().numpy())

                # test the non-zero values is a vector
                values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]
                values = paddle.to_tensor(values, dtype='float32')
                sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
                sparse_x = paddle.sparse.coalesce(sparse_x)
                values_sorted = [[5.0, 5.0], [1.0, 1.0]]
                assert np.array_equal(
                    indices_sorted, sparse_x.indices().numpy()
                )
                assert np.array_equal(values_sorted, sparse_x.values().numpy())
318

Z
zhangkaihuo 已提交
319
    def test_batch_csr(self):
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        def verify(dense_x):
            sparse_x = dense_x.to_sparse_csr()
            out = sparse_x.to_dense()
            assert np.allclose(out.numpy(), dense_x.numpy())

        shape = np.random.randint(low=1, high=10, size=3)
        shape = list(shape)
        dense_x = paddle.randn(shape)
        dense_x = paddle.nn.functional.dropout(dense_x, p=0.5)
        verify(dense_x)

        # test batchs=1
        shape[0] = 1
        dense_x = paddle.randn(shape)
        dense_x = paddle.nn.functional.dropout(dense_x, p=0.5)
        verify(dense_x)

        shape = np.random.randint(low=3, high=10, size=3)
        shape = list(shape)
        dense_x = paddle.randn(shape)
        # set the 0th batch to zero
        dense_x[0] = 0
        verify(dense_x)

        dense_x = paddle.randn(shape)
M
Mahmoud Ashraf 已提交
345
        # set the 1st batch to zero
346 347 348 349
        dense_x[1] = 0
        verify(dense_x)

        dense_x = paddle.randn(shape)
M
Mahmoud Ashraf 已提交
350
        # set the 2nd batch to zero
351 352
        dense_x[2] = 0
        verify(dense_x)
Z
zhangkaihuo 已提交
353

Z
zhangkaihuo 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    def test_zero_nnz(self):
        for device in devices:
            if device == 'cpu' or (
                device == 'gpu' and paddle.is_compiled_with_cuda()
            ):
                paddle.device.set_device(device)
                x1 = paddle.zeros([2, 2, 2])
                x2 = paddle.zeros([2, 2, 2])
                sp_csr_x = x1.to_sparse_csr()
                sp_coo_x = x2.to_sparse_coo(1)
                sp_coo_x.stop_gradient = False

                out1 = sp_csr_x.to_dense()
                out2 = sp_coo_x.to_dense()
                out2.backward()
                np.testing.assert_allclose(out1.numpy(), x1.numpy())
                np.testing.assert_allclose(out2.numpy(), x2.numpy())
                np.testing.assert_allclose(
                    sp_coo_x.grad.to_dense().numpy().sum(), 0.0
                )

375 376 377

class TestCooError(unittest.TestCase):
    def test_small_shape(self):
378 379 380 381 382 383 384 385
        with self.assertRaises(ValueError):
            indices = [[2, 3], [0, 2]]
            values = [1, 2]
            # 1. the shape too small
            dense_shape = [2, 2]
            sparse_x = paddle.sparse.sparse_coo_tensor(
                indices, values, shape=dense_shape
            )
386 387

    def test_same_nnz(self):
388 389 390 391 392
        with self.assertRaises(ValueError):
            # 2. test the nnz of indices must same as nnz of values
            indices = [[1, 2], [1, 0]]
            values = [1, 2, 3]
            sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
393 394

    def test_same_dimensions(self):
395 396 397 398 399 400 401
        with self.assertRaises(ValueError):
            indices = [[1, 2], [1, 0]]
            values = [1, 2, 3]
            shape = [2, 3, 4]
            sparse_x = paddle.sparse.sparse_coo_tensor(
                indices, values, shape=shape
            )
402 403

    def test_indices_dtype(self):
404 405 406 407
        with self.assertRaises(TypeError):
            indices = [[1.0, 2.0], [0, 1]]
            values = [1, 2]
            sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
408 409 410 411


class TestCsrError(unittest.TestCase):
    def test_dimension1(self):
412 413 414 415 416 417 418 419
        with self.assertRaises(ValueError):
            crows = [0, 1, 2, 3]
            cols = [0, 1, 2]
            values = [1, 2, 3]
            shape = [3]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
420 421

    def test_dimension2(self):
422 423 424 425 426 427 428 429
        with self.assertRaises(ValueError):
            crows = [0, 1, 2, 3]
            cols = [0, 1, 2]
            values = [1, 2, 3]
            shape = [3, 3, 3, 3]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
430 431

    def test_same_shape1(self):
432 433 434 435 436 437 438 439
        with self.assertRaises(ValueError):
            crows = [0, 1, 2, 3]
            cols = [0, 1, 2, 3]
            values = [1, 2, 3]
            shape = [3, 4]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
440

441
    def test_same_shape2(self):
442 443 444 445 446 447 448 449
        with self.assertRaises(ValueError):
            crows = [0, 1, 2, 3]
            cols = [0, 1, 2, 3]
            values = [1, 2, 3, 4]
            shape = [3, 4]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
450 451

    def test_same_shape3(self):
452 453 454 455 456 457 458 459
        with self.assertRaises(ValueError):
            crows = [0, 1, 2, 3, 0, 1, 2]
            cols = [0, 1, 2, 3, 0, 1, 2]
            values = [1, 2, 3, 4, 0, 1, 2]
            shape = [2, 3, 4]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
460 461

    def test_crows_first_value(self):
462 463 464 465 466 467 468 469
        with self.assertRaises(ValueError):
            crows = [1, 1, 2, 3]
            cols = [0, 1, 2]
            values = [1, 2, 3]
            shape = [3, 4]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
470 471

    def test_dtype(self):
472 473 474 475 476 477 478 479
        with self.assertRaises(TypeError):
            crows = [0, 1, 2, 3.0]
            cols = [0, 1, 2]
            values = [1, 2, 3]
            shape = [3]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
480

481 482 483

if __name__ == "__main__":
    unittest.main()