top_k_kernel.cu 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/top_k_kernel.h"

17 18
#include "glog/logging.h"

19
#include "paddle/phi/backends/gpu/gpu_context.h"
20
#include "paddle/phi/common/bfloat16.h"
21
#include "paddle/phi/core/kernel_registry.h"
22
#include "paddle/phi/core/tensor_utils.h"
23
#include "paddle/phi/kernels/funcs/gather.cu.h"
24
#include "paddle/phi/kernels/funcs/math_function.h"
25
#include "paddle/phi/kernels/funcs/top_k_function_cuda.h"
26

27 28 29 30 31 32 33 34
namespace phi {

#define FIXED_BLOCK_DIM_BASE(dim, ...) \
  case (dim): {                        \
    constexpr auto kBlockDim = (dim);  \
    __VA_ARGS__;                       \
  } break

35 36 37 38 39 40 41 42 43 44 45 46
#define FIXED_MAXLENGTH_BASE(MaxLength, ...) \
  case (MaxLength): {                        \
    constexpr auto maxLength = (MaxLength);  \
    __VA_ARGS__;                             \
  } break

#define FIXED_BLOCK_DIM(...)                 \
  FIXED_BLOCK_DIM_BASE(1024, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_BASE(512, ##__VA_ARGS__);  \
  FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__);  \
  FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__);  \
  FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__);   \
47 48
  FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__)

49 50 51 52 53 54 55
#define FIXED_MAXLENGTH(...)              \
  FIXED_MAXLENGTH_BASE(1, ##__VA_ARGS__); \
  FIXED_MAXLENGTH_BASE(2, ##__VA_ARGS__); \
  FIXED_MAXLENGTH_BASE(3, ##__VA_ARGS__); \
  FIXED_MAXLENGTH_BASE(4, ##__VA_ARGS__); \
  FIXED_MAXLENGTH_BASE(5, ##__VA_ARGS__)

56 57 58 59 60 61 62 63 64 65 66 67
template <typename T, typename Context>
void TopkKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const Scalar& k_scalar,
                int axis,
                bool largest,
                bool sorted,
                DenseTensor* out,
                DenseTensor* indices) {
  const auto* input = &x;
  // get the input dims
  const auto& in_dims = input->dims();
68 69 70 71 72 73 74 75

  // 0d input tensor
  if (in_dims.size() == 0) {
    phi::Copy<Context>(dev_ctx, x, dev_ctx.GetPlace(), false, out);
    dev_ctx.template Alloc<int64_t>(indices);
    phi::funcs::set_constant(dev_ctx, indices, 0.0);
    return;
  }
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
  // calcluate the real axis
  if (axis < 0) axis += in_dims.size();

  int k = k_scalar.to<int>();
  if (k_scalar.FromTensor()) {
    phi::DDim out_dims = out->dims();
    out_dims[axis] = k;
    out->Resize(out_dims);
    indices->Resize(out_dims);
  }

  const auto& out_dims = out->dims();

  const T* input_data = input->data<T>();
  T* output_data = dev_ctx.template Alloc<T>(out);
  int64_t* indices_data = dev_ctx.template Alloc<int64_t>(indices);

  if (axis == in_dims.size() - 1) {
    // if get the topK from the last axis
    const int64_t& input_height =
        phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
    const int64_t& input_width = in_dims[in_dims.size() - 1];

    if (k > input_width) {
      k = input_width;
    }

    // The conclusion is drawn from the data through multiple sets of
    // statistics
    if (input_width >= 128 && k >= input_width * 0.75) {
L
Leo Chen 已提交
106
      auto* ctx = reinterpret_cast<const phi::GPUContext*>(&dev_ctx);
107 108 109 110 111 112 113 114
      if (phi::funcs::SortTopk<T>(*ctx,
                                  input,
                                  input_width,
                                  input_height,
                                  k,
                                  out,
                                  indices,
                                  largest)) {
115 116 117
        // Successed, return.
        return;
      } else {
118 119 120 121 122 123
        VLOG(4) << "TopKOP: Some errors happened when use cub sorting, use "
                   "default topk kernel.";
      }
    }

#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 9000
124
    if (input_width >= 1024 && in_dims.size() == 1) {
125 126 127
      // 1. Gather TopK, but without sorting
      constexpr int max_num_threads = 1024;
      if (largest) {
128
        phi::funcs::RadixTopK<T, true>
129 130 131 132 133 134 135
            <<<input_height, max_num_threads, 0, dev_ctx.stream()>>>(
                input_data,
                k,
                input_height,
                input_width,
                output_data,
                indices_data);
136
      } else {
137
        phi::funcs::RadixTopK<T, false>
138 139 140 141 142 143 144
            <<<input_height, max_num_threads, 0, dev_ctx.stream()>>>(
                input_data,
                k,
                input_height,
                input_width,
                output_data,
                indices_data);
145 146 147 148 149 150 151 152 153 154 155 156
      }
      // 2. Sort if needed
      if (sorted) {
        DenseTensor sorted_output;
        DenseTensor sorted_indices;
        DenseTensor gather_indices;
        sorted_output.Resize(out->dims());
        sorted_indices.Resize(indices->dims());
        gather_indices.Resize(indices->dims());
        dev_ctx.template Alloc<T>(&sorted_output);
        dev_ctx.template Alloc<int64_t>(&sorted_indices);
        dev_ctx.template Alloc<int64_t>(&gather_indices);
L
Leo Chen 已提交
157
        auto* ctx = reinterpret_cast<const phi::GPUContext*>(&dev_ctx);
158 159 160 161 162 163 164 165
        if (phi::funcs::SortTopk<T>(*ctx,
                                    out,
                                    k,
                                    input_height,
                                    k,
                                    &sorted_output,
                                    &sorted_indices,
                                    largest)) {
166 167 168 169 170 171 172
          funcs::GPUGather<int64_t, int64_t>(
              dev_ctx, *indices, sorted_indices, &gather_indices);
          Copy(dev_ctx, gather_indices, indices->place(), false, indices);
          Copy(dev_ctx, sorted_output, out->place(), false, out);
          return;
        } else {
          VLOG(4) << "TopKOP: Some errors happened when use cub sorting, use "
173
                     "default topk kernel.";
174 175 176
        }
      } else {
        return;
177 178
      }
    }
179
#endif
180 181 182 183 184

    // NOTE: pass lds and dim same to input width.
    // NOTE: old matrix implementation of stride is different to eigen.
    const int kMaxHeight = 2048;
    int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
185 186
    auto config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, input_width);
187
    switch (config.thread_per_block.x) {
188
#ifdef PADDLE_WITH_HIP
189
      FIXED_BLOCK_DIM(
190
          phi::funcs::KeMatrixTopK<T, 20, kBlockDim>
191 192 193 194 195 196 197 198 199 200
          <<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(output_data,
                                                      k,
                                                      indices_data,
                                                      input_data,
                                                      input_width,
                                                      input_width,
                                                      static_cast<int>(k),
                                                      gridx,
                                                      input_height,
                                                      largest));
201
#else
202
      FIXED_BLOCK_DIM(switch (phi::funcs::getMaxLength(k)) {
203
        FIXED_MAXLENGTH(
204
            phi::funcs::KeMatrixTopK<T, maxLength, kBlockDim>
205 206 207 208 209 210 211 212 213 214 215 216
            <<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(output_data,
                                                        k,
                                                        indices_data,
                                                        input_data,
                                                        input_width,
                                                        input_width,
                                                        static_cast<int>(k),
                                                        gridx,
                                                        input_height,
                                                        largest));
        default:
          PADDLE_THROW(
217 218
              errors::Fatal("the input k has error when use getMaxLength "
                            "function to get the maxLength."));
219
      });
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
#endif
      default:
        PADDLE_THROW(errors::Fatal(
            "the input data shape has error in the topk cuda kernel."));
    }
  } else {
    // if get topK not from the last axis, will tranpose the tensor and get
    // TopK

    // first step, prepare the trans args for the tranpose
    std::vector<int> trans;
    for (int i = 0; i < axis; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(in_dims.size() - 1);
    for (int i = axis + 1; i < in_dims.size() - 1; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(axis);

    phi::DDim trans_dims(in_dims);
    phi::DDim trans_out_dims(out->dims());
    for (int i = 0; i < trans.size(); i++) {
      trans_dims[i] = in_dims[trans[i]];
      trans_out_dims[i] = out_dims[trans[i]];
    }
    // second step, tranpose the input
    DenseTensor trans_input;
    trans_input.Resize(trans_dims);
    dev_ctx.template Alloc<T>(&trans_input);
    int ndims = trans.size();
    funcs::TransCompute<phi::GPUContext, T>(
        ndims, dev_ctx, *input, &trans_input, trans);
    // third step, calcluate the topk
    // allocate the tmp cuda memory for the tmp result
    DenseTensor trans_ind;
    DenseTensor trans_out;
    trans_ind.Resize(trans_out_dims);
    trans_out.Resize(trans_out_dims);
    dev_ctx.template Alloc<int64_t>(&trans_ind);
    dev_ctx.template Alloc<T>(&trans_out);

    const int64_t input_height =
        phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
    const int64_t input_width = trans_dims[trans_dims.size() - 1];

    if (k > input_width) k = input_width;

    // The conclusion is drawn from the data through multiple sets of
    // statistics
    if (input_width >= 128 && k >= input_width * 0.75) {
L
Leo Chen 已提交
271
      auto* ctx = reinterpret_cast<const phi::GPUContext*>(&dev_ctx);
272 273 274 275 276 277 278 279
      if (phi::funcs::SortTopk<T>(*ctx,
                                  &trans_input,
                                  input_width,
                                  input_height,
                                  k,
                                  &trans_out,
                                  &trans_ind,
                                  largest)) {
280 281 282 283 284 285 286
        // last step, tranpose back the indices and output
        funcs::TransCompute<phi::GPUContext, int64_t>(
            ndims, dev_ctx, trans_ind, indices, trans);
        funcs::TransCompute<phi::GPUContext, T>(
            ndims, dev_ctx, trans_out, out, trans);
        return;
      } else {
287 288
        VLOG(4) << "TopKOP: Some errors happened when use cub sorting, use "
                   "default topk kernel.";
289 290 291 292 293
      }
    }

    const int kMaxHeight = 2048;
    int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
294 295
    auto config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, input_width);
296
    switch (config.thread_per_block.x) {
297
#ifdef PADDLE_WITH_HIP
298
      FIXED_BLOCK_DIM(
299
          phi::funcs::KeMatrixTopK<T, 20, kBlockDim>
300 301 302 303 304 305 306 307 308 309
          <<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(trans_out.data<T>(),
                                                      k,
                                                      trans_ind.data<int64_t>(),
                                                      trans_input.data<T>(),
                                                      input_width,
                                                      input_width,
                                                      static_cast<int>(k),
                                                      gridx,
                                                      input_height,
                                                      largest));
310
#else
311 312
      FIXED_BLOCK_DIM(switch (phi::funcs::getMaxLength(k)) {
        FIXED_MAXLENGTH(phi::funcs::KeMatrixTopK<T, maxLength, kBlockDim>
313 314 315 316 317 318 319 320 321 322 323 324 325
                        <<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(
                            trans_out.data<T>(),
                            k,
                            trans_ind.data<int64_t>(),
                            trans_input.data<T>(),
                            input_width,
                            input_width,
                            static_cast<int>(k),
                            gridx,
                            input_height,
                            largest));
        default:
          PADDLE_THROW(
326 327
              errors::Fatal("the input k has error when use getMaxLength "
                            "function to get the maxLength."));
328
      });
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
#endif
      default:
        PADDLE_THROW(errors::Fatal(
            "the input data shape has error in the topk cuda kernel."));
    }

    // last step, tranpose back the indices and output
    funcs::TransCompute<phi::GPUContext, int64_t>(
        ndims, dev_ctx, trans_ind, indices, trans);
    funcs::TransCompute<phi::GPUContext, T>(
        ndims, dev_ctx, trans_out, out, trans);
  }
}
#undef FIXED_BLOCK_DIM_BASE
#undef FIXED_BLOCK_DIM

}  // namespace phi

347
PD_REGISTER_KERNEL(topk,
348 349 350 351 352 353 354
                   GPU,
                   ALL_LAYOUT,
                   phi::TopkKernel,
                   float,
                   double,
                   int,
                   int64_t,
355 356
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
357
  kernel->OutputAt(1).SetDataType(phi::DataType::INT64);
358
}