top_k_kernel.cu 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/top_k_kernel.h"

17
#include "paddle/phi/backends/gpu/gpu_context.h"
18
#include "paddle/phi/common/bfloat16.h"
19
#include "paddle/phi/core/kernel_registry.h"
20
#include "paddle/phi/core/tensor_utils.h"
21
#include "paddle/phi/kernels/funcs/gather.cu.h"
22
#include "paddle/phi/kernels/funcs/math_function.h"
23
#include "paddle/phi/kernels/funcs/top_k_function_cuda.h"
24

25 26 27 28 29 30 31 32
namespace phi {

#define FIXED_BLOCK_DIM_BASE(dim, ...) \
  case (dim): {                        \
    constexpr auto kBlockDim = (dim);  \
    __VA_ARGS__;                       \
  } break

33 34 35 36 37 38 39 40 41 42 43 44
#define FIXED_MAXLENGTH_BASE(MaxLength, ...) \
  case (MaxLength): {                        \
    constexpr auto maxLength = (MaxLength);  \
    __VA_ARGS__;                             \
  } break

#define FIXED_BLOCK_DIM(...)                 \
  FIXED_BLOCK_DIM_BASE(1024, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_BASE(512, ##__VA_ARGS__);  \
  FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__);  \
  FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__);  \
  FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__);   \
45 46
  FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__)

47 48 49 50 51 52 53
#define FIXED_MAXLENGTH(...)              \
  FIXED_MAXLENGTH_BASE(1, ##__VA_ARGS__); \
  FIXED_MAXLENGTH_BASE(2, ##__VA_ARGS__); \
  FIXED_MAXLENGTH_BASE(3, ##__VA_ARGS__); \
  FIXED_MAXLENGTH_BASE(4, ##__VA_ARGS__); \
  FIXED_MAXLENGTH_BASE(5, ##__VA_ARGS__)

54 55 56 57 58 59 60 61 62 63 64 65
template <typename T, typename Context>
void TopkKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const Scalar& k_scalar,
                int axis,
                bool largest,
                bool sorted,
                DenseTensor* out,
                DenseTensor* indices) {
  const auto* input = &x;
  // get the input dims
  const auto& in_dims = input->dims();
66 67 68 69 70 71 72 73

  // 0d input tensor
  if (in_dims.size() == 0) {
    phi::Copy<Context>(dev_ctx, x, dev_ctx.GetPlace(), false, out);
    dev_ctx.template Alloc<int64_t>(indices);
    phi::funcs::set_constant(dev_ctx, indices, 0.0);
    return;
  }
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  // calcluate the real axis
  if (axis < 0) axis += in_dims.size();

  int k = k_scalar.to<int>();
  if (k_scalar.FromTensor()) {
    phi::DDim out_dims = out->dims();
    out_dims[axis] = k;
    out->Resize(out_dims);
    indices->Resize(out_dims);
  }

  const auto& out_dims = out->dims();

  const T* input_data = input->data<T>();
  T* output_data = dev_ctx.template Alloc<T>(out);
  int64_t* indices_data = dev_ctx.template Alloc<int64_t>(indices);

  if (axis == in_dims.size() - 1) {
    // if get the topK from the last axis
    const int64_t& input_height =
        phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
    const int64_t& input_width = in_dims[in_dims.size() - 1];

    if (k > input_width) {
      k = input_width;
    }

    // The conclusion is drawn from the data through multiple sets of
    // statistics
    if (input_width >= 128 && k >= input_width * 0.75) {
L
Leo Chen 已提交
104
      auto* ctx = reinterpret_cast<const phi::GPUContext*>(&dev_ctx);
105 106 107 108 109 110 111 112
      if (phi::funcs::SortTopk<T>(*ctx,
                                  input,
                                  input_width,
                                  input_height,
                                  k,
                                  out,
                                  indices,
                                  largest)) {
113 114 115
        // Successed, return.
        return;
      } else {
116 117 118 119 120 121
        VLOG(4) << "TopKOP: Some errors happened when use cub sorting, use "
                   "default topk kernel.";
      }
    }

#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 9000
122
    if (input_width >= 1024 && in_dims.size() == 1) {
123 124 125
      // 1. Gather TopK, but without sorting
      constexpr int max_num_threads = 1024;
      if (largest) {
126
        phi::funcs::RadixTopK<T, true>
127 128 129 130 131 132 133
            <<<input_height, max_num_threads, 0, dev_ctx.stream()>>>(
                input_data,
                k,
                input_height,
                input_width,
                output_data,
                indices_data);
134
      } else {
135
        phi::funcs::RadixTopK<T, false>
136 137 138 139 140 141 142
            <<<input_height, max_num_threads, 0, dev_ctx.stream()>>>(
                input_data,
                k,
                input_height,
                input_width,
                output_data,
                indices_data);
143 144 145 146 147 148 149 150 151 152 153 154
      }
      // 2. Sort if needed
      if (sorted) {
        DenseTensor sorted_output;
        DenseTensor sorted_indices;
        DenseTensor gather_indices;
        sorted_output.Resize(out->dims());
        sorted_indices.Resize(indices->dims());
        gather_indices.Resize(indices->dims());
        dev_ctx.template Alloc<T>(&sorted_output);
        dev_ctx.template Alloc<int64_t>(&sorted_indices);
        dev_ctx.template Alloc<int64_t>(&gather_indices);
L
Leo Chen 已提交
155
        auto* ctx = reinterpret_cast<const phi::GPUContext*>(&dev_ctx);
156 157 158 159 160 161 162 163
        if (phi::funcs::SortTopk<T>(*ctx,
                                    out,
                                    k,
                                    input_height,
                                    k,
                                    &sorted_output,
                                    &sorted_indices,
                                    largest)) {
164 165 166 167 168 169 170
          funcs::GPUGather<int64_t, int64_t>(
              dev_ctx, *indices, sorted_indices, &gather_indices);
          Copy(dev_ctx, gather_indices, indices->place(), false, indices);
          Copy(dev_ctx, sorted_output, out->place(), false, out);
          return;
        } else {
          VLOG(4) << "TopKOP: Some errors happened when use cub sorting, use "
171
                     "default topk kernel.";
172 173 174
        }
      } else {
        return;
175 176
      }
    }
177
#endif
178 179 180 181 182

    // NOTE: pass lds and dim same to input width.
    // NOTE: old matrix implementation of stride is different to eigen.
    const int kMaxHeight = 2048;
    int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
183 184
    auto config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, input_width);
185
    switch (config.thread_per_block.x) {
186
#ifdef PADDLE_WITH_HIP
187
      FIXED_BLOCK_DIM(
188
          phi::funcs::KeMatrixTopK<T, 20, kBlockDim>
189 190 191 192 193 194 195 196 197 198
          <<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(output_data,
                                                      k,
                                                      indices_data,
                                                      input_data,
                                                      input_width,
                                                      input_width,
                                                      static_cast<int>(k),
                                                      gridx,
                                                      input_height,
                                                      largest));
199
#else
200
      FIXED_BLOCK_DIM(switch (phi::funcs::getMaxLength(k)) {
201
        FIXED_MAXLENGTH(
202
            phi::funcs::KeMatrixTopK<T, maxLength, kBlockDim>
203 204 205 206 207 208 209 210 211 212 213 214
            <<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(output_data,
                                                        k,
                                                        indices_data,
                                                        input_data,
                                                        input_width,
                                                        input_width,
                                                        static_cast<int>(k),
                                                        gridx,
                                                        input_height,
                                                        largest));
        default:
          PADDLE_THROW(
215 216
              errors::Fatal("the input k has error when use getMaxLength "
                            "function to get the maxLength."));
217
      });
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
#endif
      default:
        PADDLE_THROW(errors::Fatal(
            "the input data shape has error in the topk cuda kernel."));
    }
  } else {
    // if get topK not from the last axis, will tranpose the tensor and get
    // TopK

    // first step, prepare the trans args for the tranpose
    std::vector<int> trans;
    for (int i = 0; i < axis; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(in_dims.size() - 1);
    for (int i = axis + 1; i < in_dims.size() - 1; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(axis);

    phi::DDim trans_dims(in_dims);
    phi::DDim trans_out_dims(out->dims());
    for (int i = 0; i < trans.size(); i++) {
      trans_dims[i] = in_dims[trans[i]];
      trans_out_dims[i] = out_dims[trans[i]];
    }
    // second step, tranpose the input
    DenseTensor trans_input;
    trans_input.Resize(trans_dims);
    dev_ctx.template Alloc<T>(&trans_input);
    int ndims = trans.size();
    funcs::TransCompute<phi::GPUContext, T>(
        ndims, dev_ctx, *input, &trans_input, trans);
    // third step, calcluate the topk
    // allocate the tmp cuda memory for the tmp result
    DenseTensor trans_ind;
    DenseTensor trans_out;
    trans_ind.Resize(trans_out_dims);
    trans_out.Resize(trans_out_dims);
    dev_ctx.template Alloc<int64_t>(&trans_ind);
    dev_ctx.template Alloc<T>(&trans_out);

    const int64_t input_height =
        phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
    const int64_t input_width = trans_dims[trans_dims.size() - 1];

    if (k > input_width) k = input_width;

    // The conclusion is drawn from the data through multiple sets of
    // statistics
    if (input_width >= 128 && k >= input_width * 0.75) {
L
Leo Chen 已提交
269
      auto* ctx = reinterpret_cast<const phi::GPUContext*>(&dev_ctx);
270 271 272 273 274 275 276 277
      if (phi::funcs::SortTopk<T>(*ctx,
                                  &trans_input,
                                  input_width,
                                  input_height,
                                  k,
                                  &trans_out,
                                  &trans_ind,
                                  largest)) {
278 279 280 281 282 283 284
        // last step, tranpose back the indices and output
        funcs::TransCompute<phi::GPUContext, int64_t>(
            ndims, dev_ctx, trans_ind, indices, trans);
        funcs::TransCompute<phi::GPUContext, T>(
            ndims, dev_ctx, trans_out, out, trans);
        return;
      } else {
285 286
        VLOG(4) << "TopKOP: Some errors happened when use cub sorting, use "
                   "default topk kernel.";
287 288 289 290 291
      }
    }

    const int kMaxHeight = 2048;
    int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
292 293
    auto config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, input_width);
294
    switch (config.thread_per_block.x) {
295
#ifdef PADDLE_WITH_HIP
296
      FIXED_BLOCK_DIM(
297
          phi::funcs::KeMatrixTopK<T, 20, kBlockDim>
298 299 300 301 302 303 304 305 306 307
          <<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(trans_out.data<T>(),
                                                      k,
                                                      trans_ind.data<int64_t>(),
                                                      trans_input.data<T>(),
                                                      input_width,
                                                      input_width,
                                                      static_cast<int>(k),
                                                      gridx,
                                                      input_height,
                                                      largest));
308
#else
309 310
      FIXED_BLOCK_DIM(switch (phi::funcs::getMaxLength(k)) {
        FIXED_MAXLENGTH(phi::funcs::KeMatrixTopK<T, maxLength, kBlockDim>
311 312 313 314 315 316 317 318 319 320 321 322 323
                        <<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(
                            trans_out.data<T>(),
                            k,
                            trans_ind.data<int64_t>(),
                            trans_input.data<T>(),
                            input_width,
                            input_width,
                            static_cast<int>(k),
                            gridx,
                            input_height,
                            largest));
        default:
          PADDLE_THROW(
324 325
              errors::Fatal("the input k has error when use getMaxLength "
                            "function to get the maxLength."));
326
      });
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
#endif
      default:
        PADDLE_THROW(errors::Fatal(
            "the input data shape has error in the topk cuda kernel."));
    }

    // last step, tranpose back the indices and output
    funcs::TransCompute<phi::GPUContext, int64_t>(
        ndims, dev_ctx, trans_ind, indices, trans);
    funcs::TransCompute<phi::GPUContext, T>(
        ndims, dev_ctx, trans_out, out, trans);
  }
}
#undef FIXED_BLOCK_DIM_BASE
#undef FIXED_BLOCK_DIM

}  // namespace phi

345
PD_REGISTER_KERNEL(topk,
346 347 348 349 350 351 352
                   GPU,
                   ALL_LAYOUT,
                   phi::TopkKernel,
                   float,
                   double,
                   int,
                   int64_t,
353 354
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
355
  kernel->OutputAt(1).SetDataType(phi::DataType::INT64);
356
}