matmul_v2_op_mlu.cc 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/matmul_v2_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
24 25 26 27
static void Mul(const framework::ExecutionContext& ctx,
                const Tensor& X,
                const Tensor& Y,
                Tensor* Out) {
28 29 30 31 32 33
  Out->mutable_data<T>(ctx.GetPlace());

  MLUCnnlTensorDesc x_desc(X, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc y_desc(Y, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*Out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());

34 35 36 37 38 39 40 41 42 43 44
  MLUCnnlOpTensorDesc mul_op_desc(
      CNNL_OP_TENSOR_MUL, ToCnnlDataType<T>(), CNNL_NOT_PROPAGATE_NAN);
  MLUCnnl::OpTensor(ctx,
                    mul_op_desc.get(),
                    x_desc.get(),
                    GetBasePtr(&X),
                    y_desc.get(),
                    GetBasePtr(&Y),
                    out_desc.get(),
                    GetBasePtr(Out),
                    ToCnnlDataType<T>());
45 46 47
}

template <typename T>
48 49 50 51 52
static void MatMul2D(const framework::ExecutionContext& ctx,
                     const Tensor& X,
                     const Tensor& Y,
                     Tensor* Out,
                     const bool trans_x,
53 54 55 56 57 58 59
                     const bool trans_y) {
  Out->mutable_data<T>(ctx.GetPlace());

  MLUCnnlTensorDesc x_desc(X, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc y_desc(Y, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*Out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());

60 61 62 63 64 65 66 67
  MLUCnnl::Matmul(ctx,
                  trans_x,
                  trans_y,
                  x_desc.get(),
                  GetBasePtr(&X),
                  y_desc.get(),
                  GetBasePtr(&Y),
                  out_desc.get(),
68 69 70 71
                  GetBasePtr(Out));
}

template <typename T>
72 73 74 75 76
static void MatMulND(const framework::ExecutionContext& ctx,
                     const Tensor& X,
                     const Tensor& Y,
                     Tensor* Out,
                     const bool trans_x,
77 78 79 80 81 82 83 84 85
                     const bool trans_y) {
  if (!Out->initialized()) {
    Out->mutable_data<T>(ctx.GetPlace());
  }

  MLUCnnlTensorDesc x_desc(X, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc y_desc(Y, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*Out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());

86 87 88 89 90 91 92 93
  MLUCnnl::BatchMatmul(ctx,
                       trans_x,
                       trans_y,
                       x_desc.get(),
                       GetBasePtr(&X),
                       y_desc.get(),
                       GetBasePtr(&Y),
                       out_desc.get(),
94 95 96 97 98 99
                       GetBasePtr(Out));
}

template <typename T>
static void ReduceDims(const framework::ExecutionContext& ctx,
                       const std::vector<int64_t>& dims,
100 101
                       const std::vector<int64_t>& bcast_dims,
                       const Tensor& in,
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                       Tensor* out) {
  std::vector<int64_t> axes;
  int64_t size = bcast_dims.size();
  int64_t diff = bcast_dims.size() - dims.size();
  for (int64_t i = 0; i < size; ++i) {
    if (i < diff) {
      axes.push_back(i);
      continue;
    }
    if (bcast_dims[i] > dims[i - diff]) {
      axes.push_back(i);
    }
  }
  out->mutable_data<T>(ctx.GetPlace());

  MLUCnnlTensorDesc in_desc(in, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());

  std::vector<int> reduce_dims(axes.begin(), axes.end());
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  MLUCnnlReduceDesc reduce_desc(reduce_dims,
                                CNNL_REDUCE_ADD,
                                ToCnnlDataType<T>(),
                                CNNL_NOT_PROPAGATE_NAN,
                                CNNL_REDUCE_NO_INDICES,
                                CNNL_32BIT_INDICES);

  MLUCnnl::Reduce(ctx,
                  true /*need_workspace*/,
                  reduce_desc.get(),
                  nullptr,
                  in_desc.get(),
                  GetBasePtr(&in),
                  0 /*indices_size*/,
                  nullptr,
                  nullptr,
                  out_desc.get(),
                  GetBasePtr(out));
139 140 141 142 143 144 145 146 147 148 149 150
}

template <typename T>
class MatMulV2MLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<framework::Tensor>("X");
    auto* Y = ctx.Input<framework::Tensor>("Y");
    auto* Out = ctx.Output<framework::Tensor>("Out");
    const bool trans_x = ctx.Attr<bool>("trans_x");
    const bool trans_y = ctx.Attr<bool>("trans_y");

151 152 153
    std::vector<int64_t> x_dims = phi::vectorize(X->dims());
    std::vector<int64_t> y_dims = phi::vectorize(Y->dims());
    std::vector<int64_t> out_dims = phi::vectorize(Out->dims());
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();

    // Case 1: [K] x [K] = [1]
    // Equal: [1, K] x [K, 1] = [1, 1] => [1]
    const bool all_one_dim = (x_ndim == 1 && y_ndim == 1);
    if (all_one_dim) {
      Out->Resize({1, 1});
    }

    // Resize dim 1 to 2
    Tensor x_temp, y_temp;
    x_temp.ShareDataWith(*X);
    y_temp.ShareDataWith(*Y);
    if (x_ndim == 1) {
      x_dims.insert(x_dims.begin(), 1);
170
      x_temp.Resize(phi::make_ddim(x_dims));
171 172 173 174 175
      x_ndim = 2;
      // matmul op of mlu needs `std::max(x->dim, y->dim) == out->dim`
      if (out_dims.size() < y_dims.size()) {
        std::vector<int64_t> temp_out_dims(out_dims.begin(), out_dims.end());
        temp_out_dims.insert(temp_out_dims.end() - 1, 1);
176
        Out->Resize(phi::make_ddim(temp_out_dims));
177 178 179 180
      }
    }
    if (y_ndim == 1) {
      y_dims.push_back(1);
181
      y_temp.Resize(phi::make_ddim(y_dims));
182 183 184 185 186
      y_ndim = 2;
      // matmul op of mlu needs `std::max(x->dim, y->dim) == out->dim`
      if (out_dims.size() < x_dims.size()) {
        std::vector<int64_t> temp_out_dims(out_dims.begin(), out_dims.end());
        temp_out_dims.push_back(1);
187
        Out->Resize(phi::make_ddim(temp_out_dims));
188 189 190 191 192
      }
    }

    const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
    if (trans_y) {
193 194 195 196 197 198 199 200 201 202
      PADDLE_ENFORCE_EQ(
          y_dims[y_ndim - 1],
          K,
          platform::errors::InvalidArgument("Input(Y) has error dim."
                                            "Y'dims[%d] must be equal to %d"
                                            "But received Y'dims[%d] is %d",
                                            y_ndim - 1,
                                            K,
                                            y_ndim - 1,
                                            y_dims[y_ndim - 1]));
203
    } else {
204 205 206 207 208 209 210 211 212 213
      PADDLE_ENFORCE_EQ(
          y_dims[y_ndim - 2],
          K,
          platform::errors::InvalidArgument("Input(Y) has error dim."
                                            "Y'dims[%d] must be equal to %d"
                                            "But received Y'dims[%d] is %d",
                                            y_ndim - 2,
                                            K,
                                            y_ndim - 2,
                                            y_dims[y_ndim - 2]));
214 215 216 217 218 219 220 221 222 223 224
    }

    if (x_ndim == 2 && y_ndim == 2) {
      // Case 2: [M, K] x [K, N] = [M, N]
      MatMul2D<T>(ctx, x_temp, y_temp, Out, trans_x, trans_y);
    } else {
      // Case 3: [B, M, K] x [K, N] =  [B, M, N]
      // Case 4: [B, M, K] x  [B, K, N] = [B, M, N]
      MatMulND<T>(ctx, x_temp, y_temp, Out, trans_x, trans_y);
    }

225 226
    if (phi::vectorize(Out->dims()) != out_dims) {
      Out->Resize(phi::make_ddim(out_dims));
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    }
  }
};

template <typename T>
class MatMulGradV2MLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<framework::Tensor>("X");
    auto* Y = ctx.Input<framework::Tensor>("Y");
    auto* dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dY = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    const bool trans_x = ctx.Attr<bool>("trans_x");
    const bool trans_y = ctx.Attr<bool>("trans_y");

243 244 245
    std::vector<int64_t> x_dims = phi::vectorize(X->dims());
    std::vector<int64_t> y_dims = phi::vectorize(Y->dims());
    std::vector<int64_t> out_dims = phi::vectorize(dOut->dims());
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int out_ndim = out_dims.size();

    // Case 1: [K] x [K] = [1]
    if (x_ndim == 1 && y_ndim == 1) {
      if (dX) {
        Mul<T>(ctx, *dOut, *Y, dX);
      }
      if (dY) {
        Mul<T>(ctx, *dOut, *X, dY);
      }
      return;
    }

    // Resize dim 1 to 2
    Tensor x_temp, y_temp, dout_temp;
    x_temp.ShareDataWith(*X);
    y_temp.ShareDataWith(*Y);
    dout_temp.ShareDataWith(*dOut);
    if (x_ndim == 1) {
      x_dims.insert(x_dims.begin(), 1);
      out_dims.insert(out_dims.end() - 1, 1);
269 270
      x_temp.Resize(phi::make_ddim(x_dims));
      dout_temp.Resize(phi::make_ddim(out_dims));
271 272 273 274 275 276
      x_ndim = 2;
      out_ndim += 1;
    }
    if (y_ndim == 1) {
      y_dims.push_back(1);
      out_dims.push_back(1);
277 278
      y_temp.Resize(phi::make_ddim(y_dims));
      dout_temp.Resize(phi::make_ddim(out_dims));
279 280 281 282 283 284 285
      y_ndim = 2;
      out_ndim += 1;
    }

    // Case 2: [M, K] x [K, N] = [M, N]
    if (out_ndim == 2) {
      if (dX) {
286
        dX->Resize(phi::make_ddim(x_dims));
287 288 289 290 291 292 293 294
        if (trans_x) {
          MatMul2D<T>(ctx, y_temp, dout_temp, dX, trans_y, true);
        } else {
          MatMul2D<T>(ctx, dout_temp, y_temp, dX, false, !trans_y);
        }
        dX->Resize(X->dims());
      }
      if (dY) {
295
        dY->Resize(phi::make_ddim(y_dims));
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        if (trans_y) {
          MatMul2D<T>(ctx, dout_temp, x_temp, dY, true, trans_x);
        } else {
          MatMul2D<T>(ctx, x_temp, dout_temp, dY, !trans_x, false);
        }
        dY->Resize(Y->dims());
      }
      return;
    }

    // Case 3: [B, M, K] x [K, N] =  [B, M, N]
    // Case 4: [B, M, K] x  [B, K, N] = [B, M, N]
    std::vector<int64_t> x_bcast_dims(out_ndim, 1);
    std::vector<int64_t> y_bcast_dims(out_ndim, 1);
    std::copy(out_dims.begin(), out_dims.end() - 2, x_bcast_dims.begin());
    std::copy(out_dims.begin(), out_dims.end() - 2, y_bcast_dims.begin());
    std::copy(x_dims.end() - 2, x_dims.end(), x_bcast_dims.end() - 2);
    std::copy(y_dims.end() - 2, y_dims.end(), y_bcast_dims.end() - 2);

    if (dX) {
      Tensor dx_temp(X->type());
      if (x_dims != x_bcast_dims) {
318
        dx_temp.Resize(phi::make_ddim(x_bcast_dims));
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
      } else {
        dX->mutable_data<T>(ctx.GetPlace());
        dx_temp.ShareDataWith(*dX);
      }

      if (trans_x) {
        MatMulND<T>(ctx, y_temp, dout_temp, &dx_temp, trans_y, true);
      } else {
        MatMulND<T>(ctx, dout_temp, y_temp, &dx_temp, false, !trans_y);
      }

      if (x_dims != x_bcast_dims) {
        ReduceDims<T>(ctx, x_dims, x_bcast_dims, dx_temp, dX);
      }
    }

    if (dY) {
      Tensor dy_temp(Y->type());
      if (y_dims != y_bcast_dims) {
338
        dy_temp.Resize(phi::make_ddim(y_bcast_dims));
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
      } else {
        dY->mutable_data<T>(ctx.GetPlace());
        dy_temp.ShareDataWith(*dY);
      }

      if (trans_y) {
        MatMulND<T>(ctx, dout_temp, x_temp, &dy_temp, true, trans_x);
      } else {
        MatMulND<T>(ctx, x_temp, dout_temp, &dy_temp, !trans_x, false);
      }

      if (y_dims != y_bcast_dims) {
        ReduceDims<T>(ctx, y_dims, y_bcast_dims, dy_temp, dY);
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

362 363
REGISTER_OP_MLU_KERNEL(matmul_v2,
                       ops::MatMulV2MLUKernel<float>,
364
                       ops::MatMulV2MLUKernel<plat::float16>);
365 366
REGISTER_OP_MLU_KERNEL(matmul_v2_grad,
                       ops::MatMulGradV2MLUKernel<float>,
367
                       ops::MatMulGradV2MLUKernel<plat::float16>);